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We develop a theory of low-temperature phases of discrete lattice systems which 
is guided by formal perturbation theory, and which in turn yields its rigorous 
justification. The theory applies to many systems with an infinite number of 
ground states for which the perturbation theory predicts a finite number of low- 
temperature phases. We illustrate it on a number of examples. 
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INTRODUCTION 

We develop here a theory of low-temperature phases of discrete lattice 
systems which is guided by the formal perturbation theory,/12'32) and which 
in turn yields its rigorous justification. The theory applies to a large class of 
models which have a standard low-temperature expansion (regular 
systems). This class includes most systems with a finite number of periodic 
ground states, but also many systems with an infinite number of ground 
states l~or which, however, the perturbation theory predicts a finite number 
of low-temperature phases. We illustrate the theory on the examples of the 
Balanced Model, the Ising antiferromagnet on the face-centered cubic 
lattice, the three-dimensional ANNNI model (whose phase diagram was 
first calculated using perturbation theory by Fisher and Selke (12) and was 
rigorously derived in refs. 8-10 and 25), and an antiferromagnet on the 
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simple cubic lattice with next nearest neighbor interaction and magnetic 
field. 

We shall vindicate the predictions of perturbation theory under 
somewhat stronger assumptions than regularity. (Actually, we are not 
aware of any regular model for which our assumptions are not satisfied.) 
Some of the models discussed here have already been analyzed rigorously 
in refs. 8-10 and 25. However, our method differs from theirs and we 
regard our main results as being the general Theorems A and B (Sections 1 
and 2.5) rather than the analysis of the various examples. We also have 
some results on nonregular systems, e.g., the Heilmann-Lieb models of 
liquid crystals; (~9~ these are mentioned in Section 5 and will be the subject 
of a separate publication. 

The technically most demanding part of the theory is essentially con- 
tained in the work of Bricmont et al. (BKL), (3) which itself is an extension 
of the Pigorov Sinai theory (29'3~ (see also ref. 46 for a related extension). 
Here the main difference with refs. 29 and 30 is that the low-temperature 
phases are obtained not as perturbations of the corresponding ground 
states, but of states obtained by including the low-energy excitations of the 
ground states with the lowest perturbative free energy (the dominant 
ground states)--a special case of expanding about restricted ensembles of 
BKL. When the number of the dominant ground states is finite, which is 
our ~b-asic assumption, one has the picture of contours separating regions 
belonging to the different restricted ensembles, as in the Pirogov-Sinai 
theory. However, these contours are defined here on a temperature- 
dependent scale ("renormalized")--this is another new ingredient of the 
theory. We also develop a technique which allows one to prove our version 
of the "Peierls condition." We shall now review the Pigorov-Sinai theory, 
then explain how the perturbation theory works and how one justifies it. 
For a more detailed introduction to these matters, see ref. 4. 

Pirogov and Sinai developed a rigorous theory of first-order phase 
transitions/29"3~ Their theory, combined with the results of ref. 38, gives a 
complete description of low-temperature phase diagrams of discrete lattice 
systems with a finite number of (periodic) ground states. At each site of a 
lattice of dimension two or larger, one has a "spin" variable assuming a 
finite number of values; the Hamiltonians are of finite range. The basic 
Hamiltonian H0 has a finite number of periodic ground states and one 
considers a family of perturbations 

H,  = No + ~ lAigi 
i 

of Ho removing completely the degeneracy of the ground states. Further- 
more, Ho is required to satisfy the "Peierls condition": inserting one ground 
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state in a volume A into another ground state costs an energy proportional 
to the boundary of A. This condition is common to most versions of the 
"Peierls argument. ''(29) The main result of ref. 29 is that, when the Peierls 
condition is satisfied, at low temperatures the phase diagram is a small 
deformation of the zero-temperature one. 

Several extensions and alternative versions of this theory have 
appeared: extensions to continuous systems such as field theories, (44) 
Widom-Rowlinson models (BKL), lattice models with continuous spin, (43) 
infinite-range interactions, (27) complex Hamiltonians, (1'16'28) and to some 
systems with an infinite number of periodic ground states. (I'8 10,25) 

We define now regular systems. Consider a Hamiltonian Ho; an 
excitation is a configuration which coincides with a ground state of Ho out- 
side of a finite set of sites. If the energy of an excitation (relative to the 
corresponding ground state) tends to infinity with the size of the region 
where it differs from the ground state, then Ho and the corresponding 
model are called regular. Clearly, all models satisfying the Peierls condition 
are regular, since then the energy of an excitation is of order of the size of 
the boundary of its support. In this definition and in most of the discussion 
of this Introduction we consider only periodic, globally defined ground 
states. However, as we mention later, our work involves ground states 
which are defined only locally,' some of which may not extend to ground 
states of the entire lattice. 

A simple model which is regular but has an infinite number of ground 
states and does not satisfy the Peierls condition is the Balanced Model of 
ref. 14. This is chosen here as the basic illustrative example. We consider its 
three-dimensional version, on the simple cubic lattice 2 3 . The interaction 
consists of a nearest neighbor (n.n.) ferromagnetic part and a next nearest 
neighbor (n.n.n.) antiferromagnetic part: 

Ho = - 2 Z ~ a a b + ~  Z aaab (0.1) 
n . n .  n . n . n .  

We imbed Ho into a one-parameter family H ,  of Hamiltonians: 

1 
5 2 (0.2) 

n . n . n .  

and study the System for small #. 
For # negative there are two ground states, one equal to +1 and the 

other to - 1  everywhere. These ground states are equivalent, i.e., related by 
a symmetry of the Hamiltonian. For positive p there are six equivalent 
ground states which consist of alternating plus and minus planes perpen- 
dicular to one of the three coordinate axes. For # = 0 ,  i.e., for the 
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Hamiltonian (0.1), the family of ground states is infinite, but of zero 
entropy. Apart from the above eight ground states, there are ground states 
of lesser symmetry. Each of them is obtained from the plus ground state by 
picking one of the three coordinate axes and fliping all spins in a number of 
planes perpendicular to the axis (layered structure of the ground states). 
Note that flipping the spins in a plane is not a symmetry of the 
Hamiltonian, so that the ground states of this model are not equivalent in 
general. 

To see that this model is regular but fails to satisfy the Peierls con- 
dition, consider the excitation of the plus ground state obtained from it by 
flipping all spins inside a cube of edge length L. It is easy to see that the 
energy of this excitation is of order L, when L--* ~ ,  which ensures the 
regularity, while the Peierls condition would require it to be of order L 2. 
Indeed, the faces of the cube do not contribute to the energy, since they 
locally coincide with a ground-state configuration, but the edges of the 
cube do. A similar argument shows that the two-dimensional version of 
this model is not even regular. This lack of regularity also occurs in the 
two-dimensional ANNNI model, or in the one-dimensional Ising model. 

Next we recall the formal perturbation theory for the phase diagram of 
regular systems. The basic notion here is that of a dominant ground state. 
Since the ground states are not, in general, related by symmetry, different 
ground states have different excitations. Every excitation can be decom- 
posed into connected components, called elementary excitations. The 
ground states which have the largest number of elementary excitations of 
lowest energy are called dominant. We will now illustrate these notions on 
the example of the Balanced Model. 

Excitations of (0.1) up to order 3 are pictured on Fig. 6. The first- 
order excitations, energy E1 = 12, are obtained by flipping one spin of an 
arbitrary sign; the second-order excitations are found by flipping a pair of 
nearest neighbors of the same sign, plus or minus; the third-order 
excitations are found by flipping three or four spins of the same sign in 
configurations X31 and X32. It is clear that all the ground states have the 
same number of excitations of the first order. It is also obvious that in the 
next order the plus and minus ground states have more excitations, i.e., 
that these ground states are dominant in order 2: if a ground state contains 
a pair of neighboring planes of opposite sign,then there are no second- 
order excitations coming from flipping of the intraplane pairs of nearest 
neighbors. 

The first prediction of the formal perturbation theory is that at low 
temperatures the periodic Gibbs states correspond to small perturbations 
of the dominant ground states, and only of those. Thus, for the Balanced 
Model there should be only two periodic Gibbs states, at low temperatures, 
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each of them having as typical configurations small perturbations of the 
corresponding dominant ground state. That this is indeed the case follows 
from Theorem A of the beginning of Section 1. 

In general, unless there is some accidentally large symmetry of Ho, as 
in ferromagnetic systems, where all the ground states are related by sym- 
metries of the Hamiltonian, ~3='37,41) the set of dominant ground states will 
be finite. In fact, it is in general unique except for some symmetries of H0, 
which tend to form a finite group (global spin flip, as in the balanced 
model, or lattice rotations and translations over the period of the ground 
states). 

One can also imbed the Hamiltonian H0 in a family H~ of 
Hamiltonians, as in the example (0.2), and ask for the phase diagram in the 
# space for low temperatures and # small. 

To answer this question, one proceeds as follows: fix a cutoff energy E, 
and for each ground state G consider the set of its elementary excitations 
whose energy (relative to G) does not exceed E. Because of the regularity 
assumption, this can be viewed as the phase space of a gas of "particles" 
with a finite number of species, the different elementary excitations, which 
interact via a hard-core exclusion forbidding their overlapping. One can 
define the free energy fE(#l G) of this gas, for any small #, which has stan- 

�9 dard small-activity expansion. (32) This holds for any E, although the radius 
of convergence may depend on E. Note that this free energy, unlike the free 
energy of the complete system, will depend in general on G, since the phase 
space considered depends very much on G. To find the phase diagram for # 
small, one compares the cutoff free energies f~(#]G) of different ground 
states G. The dominant ground states are those which have the lowest 
cutoff free energy, as the temperature goes to zero, for some E (and hence 
for all E ' >  E). Again the dominant ground states should give rise to the 
Gibbs states of H~ for small temperature (and #). 

Let C-ground state mean a plus or minus ground state, and D-ground 
state mean any ground state with alternating plus and minus planes; the 
results of this analysis (see Section 4.2) for the perturbation (0.2) of the 
Balanced Model yield first a curve fl ~-~ #~3')D(fl), 

flla~3'~(fl) = �89 -~E2 + e - ~ 3  

obtained from setting equal the cutoff free energy of the two C-ground 
states to the cutoff free energy of any of the six D-ground states. On #c.Dt (3) t" ) 
the eight ground states are dominant in order 3. Then our main result 
(Theorem B) asserts that there is a curve #c,D(.) with #c,D(j3)_ #c, Dt t~(3)  ~eJ = 
o(e ae3) such that for #<#c,o(fl)  one has only the two C-phases, for 
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# > #C,D(fl) one has the six D-phases, and on the curve ~(.) one has eight 
pure phases. Of course, the phase diagram may be much richer, as the 
three-dimensional ANNNI models demonstrates. ~12) 

This perturbative analysis can be completely justified using the 
Pirogov-Sinai theory, when there is a finite number of periodic ground 
states and the Peierls condition holds. (32) 

To explain the main difficulty encountered in models with an infinite 
number of ground states, which tend to be at best regular but do not 
satisfy the Peierls condition, we consider again the Balanced Model. To 
show that the two dominant ground states lead to different Gibbs states at 
low temperatures, let us insert again a large cube of the minus ground state 
into the plus ground state. As we saw, the faces do not cost any energy, 
because the configuration coincides there with a ground state except on 
their boundary, i.e., on the edges of the cube. However, this ground state is 
not a dominant one, since it contains two adjacent planes of plus spins and 
minus spins. Along these faces one has fewer low-energy excitations than in 
the plus or the minus ground state. Hence, these faces, although not costing 
any energy, cost a free energy, because of the loss of low energy excitations 
they cause. However, this free energy is very small at low temperatures, 
being of order e-Pea, where D is the order in which the plus and the minus 
ground states dominate (here D = 2 and ED = 16). One has to show now 
that this small factor is sufficient for the Peierls argument to work, and to 
prove that the plus and the minus ground states yield different phases. 

Our main idea is to define new, renormalized, contours, so that the 
regions of the lattice where the configuration coincides with a nondominant 
ground state are included in the contours. If the family of the dominant 
ground states is finite, the new contours will have all the geometrical 
properties of the usual contours, since the faces discussed above will be 
part of the contour. Of course, the first thing to do, in order to implement 
this idea, is to define the contour, not with respect to the ground state, but 
with respect to the ground states and their low-energy excitations. We 
introduce, following BKL, restricted ensembles: They are simply the gases 
of low-energy excitations that we have associated with the ground states. 
They are restricted because we allow only a certain, ground-state- 
dependent, set of configurations. They are also dilute in the sense of BKL, 
because there is a convergent (low-temperature) expansion in these ensem- 
bles, which, in a gas language, is a low-fugacity expansion. In particular, 
one has a good control on the free energy in a finite volume: one can 
separate the bulk term from the boundary one, and get estimates on the 
latter. 

The new contours will be the regions of the lattice where the con- 
figuration does not belong to a restricted ensemble of a dominant ground 
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state. Since the restricted ensemble of the nondominant ground states have 
higher free energy, these contours will have some damping factor. However, 
this factor will be exponentially small in /~, because the difference in free 
energy is only due to low-energy excitations. To compensate for this, we 
shall define the contour on a temperature-dependent scale. Namely, cover 
the lattice with large cubes of volume e ~E with E > Eo ; define a cube C to 
be irregular, for a given configuration, if the configuration restricted to C 
either belongs to the restricted ensemble of a nondominant ground state 
(cube of type I) or contains an excitation (of any ground state) of energy 
E '  strictly larger than Ez~ (cube of type II), where E '  is chosen in a suitable 
way. 

To see that irregular cubes are highly unlikely, one first makes the 
observation that in all our examples any cube of type I contains a region 
of size I C[ 2/3 in which the local ground state is nondominant (this is 
abstracted as our condition (Q) of Section 3.3; an exponent smaller than 
2/3 would also go), and therefore each cube of type I costs a free energy 

[ C] 2/3 e~ED = e / ~ ( 2 E / 3  - ED) 

where is large if ~ E > E  D (actually, the precise estimates are somewhat 
more delicate; see Section 3.3). For the cubes of type II one has the 
following rough estimates of the probability of finding even one excitation 
of energy E '  in a box C: summing over all families of excitations in C, one  
obtains 

(e ~ E ' ) n ( I C I ) = ( 1  + e  /~E')ICI--I=~ IC[ e - l~E '~e  -NE' E) 
\ n /  n 

which is again very small for/~ large if E '  > E. The basic fact that we use 
here is that the set of excitations is discrete, so that different excitations are 
associated with different length scales: the size of the cube in which they 
have a significant probability to appear. This size is of order e ~E for an 
excitation of energy E. 

One final observation: whatever the scale on which the new contours 
are defined, the number of them containing a given number n of cubes is 
of order c", with c independent of the scale (provided that the number of 
cubes overlapping with a given cube is fixed). Combining these remarks, 
one easily obtains a Peierls bound, which proves the coexistence of the plus 
and minus phases, and only of those, at low temperatures; see ref. 4 for an 
elementary version of this argument. 

One also wants to analyze what happens for small perturbations of the 
original Hamiltonian, e.g., for (0.2). With the notions of restricted ensemble 
and of large-scale contours, one can rather easily adapt the Pirogov-Sinai 

822/54/1-2-7 
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method to this situation. Indeed, the new contours satisfy the essential 
property of their contours, namely the Peierls condition, with the difference 
that disjoint contours are no longer independent, because in their com- 
plement one no longer has a ground state, but a restricted ensemble of a 
(dominant) ground state, which induces interactions between (outer) 
contours. This situation is common to many extensions of Pirogov-Sinai 
theory, e.g., to field theory (44) or to continuum fluids, (3) where very low- 
energy excitations around a ground state cannot be put into the contours. 
Here we use the method of ref. 3 to treat these interacting contour models. 

The contours of the Balanced Model obtained by inserting a cube of 
minus spins into the plus ground state have a number of simplifying 
features not present in the case of more general and complicated contours, 
In fact, for all these arguments to go through we need a more precise 
("localized") version of various assumptions. These assumptions do not 
surface in the above discussion or in the usual perturbative calculations, 
which involve only global (and periodic) ground states. We note that 
domination in the local form implies the existence of surface tension 
between the coexisting phases (Section 5.7), a result which requires an 
independent calculation when only the periodic ground states are used. We 
explain now our technical assumptions. 

(a) Retouch property. It means that a configuration which is 
"excited" in a small region of the lattice surrounded by a region with the 
lowest possible energy can be changed ("retouched") in this region in a 
unique way so that the energy has the lowest possible value everywhere 
(Fig. 2). This property does not hold in the one-dimensional Ising model 
(where one may have to flip a half-line of spins to remove an isolated 
excitation) and in several nonregular models (two-dimensional ANNNI, 
two-dimensional balanced). It holds in all the regular models we have con- 
sidered. It is similar to the decomposition property, a notion appearing in 
the study of ferromagnetic models, (z~ in which case it is equivalent to the 
regularity. It implies that the restricted ensemble of low-energy excitations 
forms a gas with a finite number of "species of particles" with small 
activities when the temperature is low, and interacting through exclusion 
only, and therefore has a standard low-temperature (=  small-activity) 
expansion. The last property was obvious in the models of BKL; here it is 
formalized as the retouch property, which itself follows from a detailed 
analysis of the geometry of the ground states and is related to their layered 
structure. 

(b) Domination in its local form. As mentioned earlier, the notion of 
domination discussed above involves periodic ground states only and is 
define only in the thermodynamic limit, while we need to do finite-volume 



Low Temperature Phase Transition 97 

estimates on partition functions. In particular, one has to deal with local 
ground states which do not extend to ground states defined on all the lat- 
tice. Thus, we shall demand that the domination can be suitably expressed 
in finite volume, what we call the "local" form of the domination. In all 
models we consider, this is best exhibited through corresponding properties 
of an effective potential of the gas of low-energy excitations. [When no 
perturbations are considered--/~=0 in (0.2)--one can usually infer the 
domination by inspection.] 

(c) Condition (5~ This we consider to be the least satisfactory of 
our assumptions. It is somehow related to the fact that the number of 
ground states is not too large. In the models we consider it is implied by 
the fact that the ground states have layered structure: all the ground states 
can be obtained from a finite number of them by flipping all the spins in a 
number of planes (layers), not lines. 

As a rule, we find that our "technical" hypotheses are not more restric- 
tive than the condition of regularity. However, they do make the proofs 
somewhat subtle and longer. 

We give now an outline of the paper. After introducing in Section 1 
the framework, we consider in Theorem A the simplest version of our 
results, namely the situation when all the ground states are equivalent and 
when we go up, i.e., raise the temperature, starting from zero, without 
introducing any perturbations of H0. Then we introduce several regular 
models with an infinite number of ground states, describe their global 
ground states and low-energy excitations, deduce which of the ground 
states are dominant, and state explicitly the consequences of Theorem A for 
the models. Then, in Section 2 we introduce our main technical tools: the 
restricted ensembles of low-energy excitations of the ground states and the 
effective potentials. To define them, we need to introduce the retouch 
property. Using these notions, we state the precise form of local domination 
that we need. Section 3 is devoted to the proofs of the general Theorems A 
and B. We return to the examples in Section 4, where we give proofs of the 
retouch property and local domination. Section5 contains assorted 
remarks. 

1. THE SETUP,  EXAMPLES,  A N D  P R E L I M I N A R Y  RESULTS 

After introducing the framework, we formulate our main result in its 
simplest form (Theorem A). Then we describe the global ground states of 
the models and the excitations which yield the domination, and apply to 
the models Theorem A. A proof of a more precise (localized) version of 
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domination results and of other properties [-retouch, Condition (~)3 ,  
which form the basis of our analysis, is given in Section 4. 

Our lattice ~ is a discrete g3-invariant subset of ~3, and the con- 
figuration space 2" is S t, where S is a finite set, or YA = S A if one considers 
a system on a subset A of the lattice. Most of our examples are formulated 
in spin language. In the case of spin 1/2 the configuration space is 2" = 
{-1 ,  1}a; aa (or sa) is the usual spin variable at a lattice point a. The 
Hamiltonian is written as 

H - - Z +  ~ (1.1) 
B 

where B runs over a family of finite subsets of the lattice, called bonds. 

We will consider symmetries of the system induced by transformations 
of the lattice, mostly translations and rotations, and by pointwise trans- 
formations, like spin flips. We adopt the usual definitions (ref. 30; ref. 32, 
Section I.A.6) of symmetries and states of the system, in particular that of 
the equivalence of configurations under symmetries of the Hamiltonian. We 
refer to refs. 30 and 32 for definitions of Gibbs states and equilibrium 
states. By pure phase we understand an extremal equilibrium state. The 
low-temperature pure phases investigated here are obtained as limits of 
finite-volume Gibbs states with boundary conditions defined by the 
dominant ground states. As usual, correlations in these states decay 
exponentially. 

We give now a simple version of our results, when all the dominant 
ground states are equivalent and no perturbations of the original system 
are introduced. The retouch property and Condition ( ~ )  are discussed in 
the Introduction, and again in Sections 2.2 and 3.3, where they are defined 
in a more precise way, and finally are proved to hold for each of the 
models in Section 4. 

Theorem A. Suppose that H o has the retouch property, i.e., that 
the low-temperature excitations of Ho form a "gas" interacting through 
exclusion only, that the Condition ( ~ )  is satisfied, and that there is a finite 
family ~* of dominant ground states, all equivalent under symmetries of 
H o. Then for low enough temperatures there are exactly If q*[ different pure 
phases, 4 each of them being a small perturbation of the corresponding 
ground state. 

This is proved in Section 3.5. 
We introduce now a few models which will serve as an illustration of 

the general scheme, and which are also of independent interest. 

4 For  any set S, IS] denotes  its number  of elements.  
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1.1. The Balanced Model  

This is the simplest model with an infinite number of ground states 
which illustrates the theory. It has been introduced and discussed exten- 
sively in ref. 14, Section 8. The three-dimensional version of the model is 
discussed in the Introduction. In Z a it takes the form 

1 
H o =  --(d--l) ~ r ~ ~ ffa6 b (1.2) 

n . n .  n . n . n .  

where the first sum extends over (unordered) pairs of nearest neighbors 
(n.n.) and the second over pairs of next nearest neighbors (n.n.n.). In ref. 14 
a number of hypotheses regarding the model are advanced and the reflec- 
tion positivity method is used to prove it has a long-range order in dimen- 
sion 5 and larger. We refine the conjectures of ref. 14, and applying 
Theorem A to the model (1.2), we obtain that if d~> 3, it has exactly two 
phases at low temperatures. Furthermore, if one adds to (1.2) a n.n.n, per- 
turbation [-see (0.2)], one obtains the phase diagram of Fig. 7, as described 
in the Introduction and proved in Section 4.1. 

1.2. S p i n - l / 2  A n t i f e r r o m a g n e t  on a Face-Centered 
Cubic Latt ice 

The lattice n_ is the face-centered cubic (fcc) lattice, whose elementary 
cell is pictured in Fig. 8. The Hamiltonian is 

Ho = ~ aaab (1.3) 
n . n .  

More generally, one considers a two-parameter family H(a, h) of pertur- 
bations of (1.3): 

n . n .  r l . n . n ,  a 

(l.4) 

Every point has 12 n.n., one at the center of each plaquette incident upon 
it, and six n.n.n.--the n.n. on its 7/3 orbit. 

The ground states of the model (1.3) which are of interest here can be 
described as follows (ref. 6; see Section 4.2). There is a family ~* of six 
most symmetric ground states with alternating planes of pluses and 
minuses, planes perpendicular to one o f  the three coordinate axes. The 
ground states of if* are all equivalent, i.e., related by symmetries of the 
Hamiltonian (translations and rotations). To obtain the other ground 
states, choose one of the three coordinate axes and then one of the two 
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ground states, with planes perpendicular to this axis. Furthermore, select 
any of the two remaining coordinates axes and any number of planes 
perpendicular to it. Finaly, flip all the spins in the selected planes. 

Figure 9 gives low-energy excitations of the model. The ground states 
of f#* are dominant in order three: The first-order excitations are obtained 
by flipping one spin, positive or negative; the second order by flipping a 
pair of n.n. spins of opposite signs. There is no difference between the 
ground states as far as the number of excitations of these types is 
concerned. The same refers to all third-order excitations apart from X36. 
This last type of excitation, obtained by flipping four spins marked by f ' s  
on Fig. 8, favors the six most symmetric ground states. As is shown in Sec- 
tion 4.2, by Theorem A this implies that at low but nonzero temperatures 
there are precisely six pure phases--small perturbations of the 
corresponding ground states of f#*. In Section 4.2 we give results for 
~ , h ~ 0 .  

1.3. The A N N N I  M o d e l  (8 1o.12.25) 

For the sake of notational simplicity we consider the three-dimen- 
sional case only. Our results hold in higher dimensions, too. The two- 
dimensional model is not regular any more and description of its low- 
temperature properties in a rigorous way is an open problem, presumably 
harder than the one we solve here. (t3'36) 

In the notation of ref. 10, the Hamiltonian is 

m:--Jo ~ SaSb--J1 ~ SaSh--J2 2 SaSb ( 1 . 5 )  

h o r  n .n .  v e r  n .n .  v e t  n .n .n .  

where s takes values + 1, the first sum is over all pairs of horizontal nearest 
neighbors, i.e., n.n. pairs joined by a line perpendicular to the z axis; the 
second and the third sums are over vertical pairs of nearest and next 
nearest neighbors, respectively. The coupling constants Jo and J1 are 
positive and J2 negative. 

Due to the ferromagnetic (horizontal) part of the interaction, the 
ground states of (1.5) consist of horizontal layers of plus and minus spins. 
The arrangement of these layers is described by ground states of a one- 
dimensional system with interaction given by the vertical part of (1.5)--this 
is the stacking construction of Section 4.4. Thus, it is enough to describe 
the ground states of the corresponding one-dimensional model. 

The structure of these ground states is determined by a competition 
between the forromagnetic part of the interaction (coupling constant Jl)  
and the antiferromagnetic part (coupling constant J2). Let ~=- - Jz / J1 .  
Then for K > 1/2 any configuration with no plus or minus spins surrounded 
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by spins of opposite signs is a ground state. This family of ground states 
has a distinguished subfamily of periodic ground states which, according to 
the perturbative calculations of ref. 12, should yield the low-temperature 
phases: 

There are two ground states of type ( ~ ) ,  the ferromagnetic plus and 
minus ground states; six of type (3 ) ,  ground states with alternating stripes 
of width 3 of plus and minus planes; four of type (2 ) ;  and 2(2j + 3) of type 
(2J3), j = 1, 2, 3,..., which will not be considered here. The ground states of 
each type are equivalent under translations and global flip symmetries of 
the Hamiltonian. 

For to= 1/2 and J0 large enough the ground states of type ( 3 )  are 
dominant in first order, which can be easily understood as follows. For 3"o 
large enough the lowest order excitations are obtained by flipping one spin. 
The energy of such an excitation is - 8 J o  (from the interplane interaction) 
plus a term coming from the corresponding one-dimensional system. The 
last term is zero if the configuration obtained by flipping the spin is a 
ground state again. Now, a ( 3 )  ground state of the one-dimensional 
system consists of alternating triples of plus and minus spins. Flipping any 
border spin of such a configuration (i.e., a spin having a n.n. of opposite 
sign) leads to a ground state again (no isolated plus or minus spins). And it 
is clear that no other ground state will have as many lowest energy 
excitations as the ground states of type ( 3 )  do. Hence, by Theorem A for 
x =  1/2 the model (1.4) has exactly six.pure phases at low temperatures. 
Results for K r 1/2 are discussed in Section 4.3. 

1.4. The S t a c k e d  A n t i f e r r o m a g n e t  (4) 

This is a model on the simple cubic lattice 7/3 with the Hamiltonian 

H= 2 GaGb--~ 2 ~176 2 ~ J 20"aO'b (1.6) 
h o r  n . n .  h o r  n . n . n ,  a v e r  n . n .  

The notation is similiar to that of (1.5), with the difference that here one 
stacks two-dimensional systems, each living on a plane perpendicular to 
the z axis. For J >  0, the case considered here, the ground states of (1.6) are 
obtained by repeating in each of the planes a ground state of an 
antiferromagnetic system on the simple square lattice 7/2, with next nearest 
neighbor interactions in an external magnetic field, i.e., with Hamiltonian 

H~ Z O'a6b--O~ 2 ffaO'b--h Z O'a (1.7) 
n . n .  n . n . n ,  a 

These ground states have been described in Section 5 of ref. 4 and are 
obtained by patching the plaquettes of Fig. 1 here. 
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s=O / /  

g=CO pn2n =(~: )  
g#: 2 

g=4 ~ Ip ~ 

.^/--... p,= (:_+) 
S~eU ~ s=O -~-A 

g=CO g~:4 

Fig. 1. Ground states of the model (1.7) are obtained by patching the indicated con- 
figurations of plaquettes. The ground-state entropy s is nonzero on the bold lines, g indicates 
the number of ground states when s = 0; when g is finite, it is equal to the number of low- 
temperature phases (the PS theory applies), g* is the number of dominant ground states 
(equal to the number of low-temperature phases) of the stacked system (1.6). 

We concentrate here and in Section 4.4 on an analysis of the low- 
temperature properties of the model for (~, h) in the (open) strip P with 
base BC. As discussed in ref. 4, stacking transforms the lines with nonzero 
entropy into lines on which the entropy is zero but the model is nonregular 
and the theory developed here does not apply. For other values of the 
parameters of Fig. 1, outside of the strip and the interval BC, the number 
of ground states is finite and the PS theory applies. On the interval DB the 

2 two ground states with plaquettes P,,n are dominant and it is not hard to 
extend the arguments of ref. 4 to a proof of all the assumptions of 
Theorem A, yielding two pure low-temperature phases. We did not com- 
pute the complete phase diagram in the neighborhood of the interval DB. 
We give now the results concerning the strip; the details of the proof are in 
Section 4.5. 

The ground states obtained by patching plaquettes of type p1 can be 
described as follows. First, let G 1 denote the configuration equal to - 1  at 
the points of 2 - 2  2 and +1 otherwise. Let N* denote the family of four 
configurations obtained from G 1 by applying translations. Then any 
ground state for (e, #) in the strip can be obtained by first picking one of 
the configurations of ~f*, then picking one of the coordinate axes and a 
number of lines of the lattice perpendicular to the axis, and finally shifting 
the configurations on the chosen lines. It is clear that the family (# of 
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configurations so obtained has zero entropy. Our assertion is that for small 
enough positive J the configurations of f#* yield upon stacking the 
dominant ground states of the model (1.6). We denote the family of these 
stacked configurations f#* again. As shown in Section 4.5, by Theorem A 
the model has exactly four low-temperature phases. 

The domination of f#* is due to different kinds of excitations in 
different parts of the strip, and occurs in different orders. That is why the 
strip is partitioned into the subregions p0, 2 2 [Pnnn on Pnn, and Fig. 1. For 
more details see Section 4.5. 

2. D O M I N A T I O N ,  PEIERLS C O N D I T I O N ,  A N D  T H E  
M A I N  R E S U L T S  

We consider here the ensembles of low-energy excitations around 
which we expand. These replace the ground states of PS theory (see BKL). 

To motivate the following discussion of ground states and excitations, 
we now compare their properties in the PS theory and in the situations 
encountered in the present work. 

Suppose, for simplicity, that the ground-state energy of the system is 
zero. For any configuration one can decompose the lattice into regions 
which contribute zero to the energy, and the rest, the "excited" regions. The 
zero-contributing region splits into connected components which are 
defined as the local ground states. The connected components of the rest 
form "excitations." In the PS theory, where the number of (global) ground 
states is finite, and therefore each of them is periodic, one can define things 
in such a way that each of the local ground states is a restriction of a global 
ground state. This implies, in particular, that any excitation without holes 
which is surrounded by a local ground state can be "removed" by 
extending the local ground state to a global one. This is not so in the cases 
considered in the present paper, when the number of global ground states 
is infinite, as is illustrated in Fig. 2. Here the removable excitation and the 
shadow of the large nonremovable excitation can be made as large as one 
may wish. All this necessitates a carefull treatment of local ground states, 
excitations, and free energies. 

After introducing in Section 2.1 the notion of a removable excitation, 
we define the restricted ensembles of low-energy excitations (Section 2.2). 
These are dilute in the sense of BKL, i.e., they have a (standfird) con- 
vergent low-temperature expansion. The locally dominant ground states 
are defined by the condition that their restricted ensembles have the lowest 
effective free energy. Using the low-temperature expansion, we then prove 
that when the number of the locally dominant ground states is finite, our 
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Fig. 2. 

I �9 

The cross-hatched excitation is removable, the hatched one is not: there is no global 
ground state equal to G' and G" on their respective domains. 

version (2.9) of the Peierls condi t ion  is satisfied. Final ly ,  in the last section, 
we formula te  our  main  results and  discuss a number  of their  var iants  and  
extensions.  

2.1. Local Ground States and Excitations 

If X is an e lement  of Y'A for some A, then J( is a partial configuration 
and A is the domain of X, dom(X) .  F o r  M c A  and X6&rA, XM is the 
res t r ic t ion of X to M. 

Let  l be a nonnega t ive  number ;  for any  subset  A of the lat t ice its 
l-boundary is defined as s 

~3zA = {a ~ A: dist(a,  A c) < l} 

and we define the l-neighborhood [A, l] and the l-interior ]A, l[ of A as 

[A,l]={a~_:dist(a,A)<,l}, ]A,l[={a~Q_:dist(a,A")>l} 

5 dist(a, b)=maxi[ai-bel, dist(a, A) = min0~ A dist(a, b). 
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By a boundary we understand an /-boundary with some fixed l. Later we 
will fix the value of l so that the retouch property, defined in the next 
section, holds. 

Let �9 be a potential. For  any finite B set 

~be = rain cbB(X ) 
X 

r is an m-potential if there exists a configuration X such that ~ ( X )  = ~b B 
for any B, (32) To exhibit the structure of ground states more clearly, it is 
often convenient to reformulate the model in terms of an 
m-potential. We will introduce later the notion of an effective potential, 
which will play a similar role with respect to the low-temperature phases. 
Each of the models we consider has an m-potential. We emphasize that 
most systems admit m-potentials, even the so-called "frustrated" models. 
One can reformulate the theory in terms of the relative Hamiltonian, mak- 
ing it independent of the choice of the potential, as in ref. 29. 

For an m-potential ~ let 

fgA = (r = {XA: X6 Y', ~ ( X )  = ~b B if B c A } 

Elements of U f~A, where the sum is over all the finite subsets of the lattice, 
are called local ground states, and the elements of (r = f~t are called (global) 
ground states. We stress that the local ground states are not restrictions of 
global ground states in general (see Fig. 2). f~* is the family of the 
dominant elements of f~, which are defined in Section 2.4 below. ~*  is 
assumed to be finite; its elements are periodic but not necessarily 
equivalent under symmetries of the interaction. 

A partial configuration X is an excitation if its restriction to the boun- 
dary of its domain is a (local) ground state. (Note that according to this 
definition any local ground state is an excitation, and that this notion is 
different from that of the excitation of ref. 32, though related to it.) A par- 
tial configuration X is said to be contained in a partial configuration Y, 
X c  Y, if Y is equal to X on dom(X). An excitation which does not 
properly contain another one is an elementary excitation. Two excitations 
are compatible if there exists an excitation containing both of them. We 
comment in Remark 5 at the end of this section on the l (in)dependence of 
the construction. 

Let H o be a Hamiltonian with an m-potential q~o, and let l be larger 
than the range of ~o; for an excitation X we define its energy as 

Ho(X) = ~] [mo ,~ (x ) -  ~0,B] 
B m d o r a ( X )  
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Defining the support of an excitation by 

supp(X) = ~ {dom(Y): elementary excitation Y c  X} 

so that supp(X)=dom(X) if X is elementary, we note that there exist 
sl, s2 > 0 such that for any excitation X 

sl Isupp(X)[ ~< Ho(X) <<. s2 [supp(X)L 

which is also written as 

s, IX[ <~ Ho(X ) <<. s2 [XI 

where IX[ stands for Isupp(X)l. 

(2.1) 

2.2. The Retouch Property  

In the PS theory the ground states can be read off from their restric- 
tions to any sufficiently large portion of the lattice, since their number is 
finite. This is no longer true when the number of ground states is infinite. 
However, in all our models local ground states are determined by their 
restrictions to the boundaries, i.e., two local ground states with a common 
domain which are equal on its boundary are equal everywhere. This 
uniqueness property is assummed in the following; it certainly does not 
hold in models with nonzero ground-state entropy. 

An excitation iV with a domain A is removable if it is equal to an 
element of NA on the/-boundary of A; this element of NA, which is unique, 
since the ground states extend uniquely from the boundaries, is denoted 
G(X). If G is a ground states and X is a removable excitation such that 
G(X) = G, then J( will be called an excitation of G. If X is removable and 
J ( c  Y, then there is a unique partial configuration obtained by removing X 
from Y, equal to G(X) on dom(X) and to Y otherwise. 

The models we consider, and many others, have the following retouch 
property: for any E > 0  there exists l(E) such that if l> l (E) ,  then any 
elementary excitation with energy smaller than E is removable. (l is implicit 
in the definition of the boundary and therefore also in that of the 
excitation.) Note that by definition, in models with the retouch property 
the ground states extend uniquely from the boundaries. We will need the 
retouch property for excitations up to a certain energy, but in the models 
here it holds for any E. 

The retouch property is akin to the decomposition property of ref. 20 
(compare with the IM in one dimension, or the Pecherski model(32~). It will 
be proved to hold in a number of models in Section 4. 
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If X is any partial configuration equal to a ground state on the boun- 
dary of its domain, then there is a uniquely defined partial configuration 
retouch of J(, ret(X), obtained from X by removing from it all elementary 
excitations with energy smaller than E. Here E and l > l(E) are implicit. 

The retouch property implies regularity of the model in the sense of 
ref. 31. We do not know whether the converse implication is true. 

2.3. Res t r i c ted  Ensembles 

For a subset A of the lattice and a (possibly local) ground state G 
whose domain contains the /-neighborhood of A we define the restricted 
ensembles 

~rG.e= {Xe 32aom(G):Xis an excitation and ret(X) = G} 

~ A  G'E ~''~- { W e  ~,-G,E: Xdom(G)\ A = G d o m ( G ) \  A } 

For a Hamilton H with a potential ~b of a range ~<l the corresponding 
partition function is 

ZE(AIG )= ~ e x p - f l  ~ ~B(X) 
X e gg'~ ' E B r~ A =A ~ 

We will need also partition functions defined by boundary conditions 
belonging to a restricted ensemble of a ground state. Thus, let A and G be 
as above and let ye~rG, e. Then 

Ze(AI Y) -- Z exp - fl ~ r ) 
X B c ~ A e S ~  

where the summation is over J fe  3fA c 'e  such that the elementary excitations 
of X are compatible (in the sense of Section 2.1) with those elementary 
excitations of Y whose supports.intersect the complement of A. The set of 
all such X is denoted 3fA ~'E. 

Let G be a ground state and let 0 be a multiplicity function defined on 
the elementary excitations of G, i.e., a function from the set of elementary 
excitations of G to nonnegative integers which is nonzero on a finite set 
only. For  a multiplicity function (m.f.) we set 

where 

H(O) =~  O(X) H(X), supp(O) = U supp(X) 
X ,~(X) # 0 

H(X) = ~ [~e (X)  - ~B(G)] 
B ~ supp(X) 
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Ho(O ) is the energy of 0 and supp(0) its support. For any excitation X we 
denote by ~9 x the multiplicity function, equal to one on the elementary 
excitations of X and zero otherwise. Let 

~'exp -/~H(0), 
r a)  -- ~0, 

if ~ = 0x for some X ~ f  a'e 
otherwise 

Similarly, we define Boltzmann factors with boundary conditions: for a 
finite A, a ground state G defined on an/-neighborhood of A, and Ye ~ca, e 
we set 

~exp -/~H(~), 
~bE(0, A, Y) = [0, 

i f0  = 9x for some X s  W A r,e 
otherwise 

Then 

Ze(AI Y)= {exp I - ~  
B r ~ A T S ~  

q~B(G)I} ~ OE(O, A, Y) 

and the cluster expansion reads 

log ZE(A t Y) = --fl ~ q)B(G) + ~ r 0 ~bE( , A, Y) (2.2) 
B ~ A ~ ~Z~ ~9 

where the Ursell functions (truncated Boltzmann factors) r ~q ~be( , A, Y) are 
equal, up to a combinatorial factor, to e -~/~(~) when ~9 is "connected" and 
zero otherwise. This follows from standard algebraic formalism and from 

r~9 the fact that ~e(O,A, Y) can be written as ~bE( , G) times a "one-point" 
factor equal to 0 or 1, depending on Y (see BKL, Appendix 1, for instance). 

Terms of the cluster expansion are now classified according to their 
order of magnitude, as/3 --* oe. We let 

= {Ho(X): any excitation X} 

be the set of all possible energies of excitation; g = {0, El ,  E2 .... }, with 
0 < E1 < E2 . . . . .  with E k ~ oe as k --, oe. We note that g is an additive set 
of positive numbers, i.e., Et + Ej e g for any i, j. If Ho(X) = Ek, we say that 
X is of order k; similarly, if the energy Ho(~9 ) of an m.f. 0 is Ek, we say that 
0 is of order k (such a k always exists and is unique). 

In a by now standard way, one shows that there exists/~o such that for 
/3>/~ o the sum in (2.2) is absolutely convergent for each A and Y, 
uniformly in Y for each A. More precisely, one has the bound 

r O -~ek (2.3a) I~E( , G)I ~< cke 
~q:a E s u p p ( 0 ) ,  HO(O) >1 Ek 
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with c~ independent of G, fl, and the lattice point a (see BKL, Appen- 
dix A), and for any a, b 

r '9 -hi Iq~E( , G)[ ~< c e  - f l cc [a  (2.3b) 
O:a,b ~ supp(,9) 

with positive ~ and c, independent of a, b, G, and fl. The bounds (2.3) hold 
T ~  T ' 9  when ~e( , G) is replaced by ~f(  , A, Y), and then e and c are independent 

of Y and A, too. 
If G is defined on all the lattice and is periodic, say 2U invariant, then 

log ZE(At Y) = - IAI  fe(G)  + O(IOAI) 

where 

fE(G) fleG t~-/~-d[-X 2 T '9 = - ~E( , G), e a = l i m  ]A[-1 
0(mod ~d) A B o c a  

(2.4) 

and the series is absolutely convergent (parameters on which H depends 
are implicit in f ) .  We will need a localized version of these formulas in 
which the perturbative free energy of a ground state G is represented as a 
sum of local terms, with G neither periodic nor defined globally. More 
precisely, by grouping the terms of (2.2), we define an effective potential 
with the property that for the dominant ground states, and only for these, 
the effective potential is minimal. This is analogous to the concept of an 
m-potential. To allow for a flexibility of grouping which will be needed in 
our discussion of the models in Section 4, for each lattice point a we con- 
sider weight functions B~--~x(a, B) and ~v-~z(a, ,9) defined on the sets of 
bonds and m.f.'s, respectively, such that ;( ~> 0 and for each B and '9 

z ( a ,  '9) = 1 
a 

rE(G, a) = flea(a ) + j~E(G, a) 

z(a ,  B)  = 1, 
a 

We then define 

ea(a) = ~ z(a, B) ebb(G), 
B 

where 

jTE ( G, a ) _ ~ r '9 = 0E( , G) z (a ,  ~) 

and if G is a local ground state, then for points a which are far enough 
from the complement of dom(G) we define 

f~E)(G, a) f le~(a)-  ~ 7- '9 = ~bE( , G) z(a, oa) (2.5) 
H0(o a) ~< E 
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"far enough" meaning that the m.f.'s appearing on the rhs here have 
support contained in dom(G). Finally, for any finite A and a ground state 
G defined on the/-neighborhood of A, we define 

fe(A, G, a) ~ TO = - ~)E( , c )  z ( a ,  0), 
~gcA 

fE(A, G, a)= [3eG(a) + ye(A, G, a) 

The ;~ which we use below has the locality property that there exists 
N1 such that 

x(a, B ) = 0  if dist(B, a)>Nl  
(2.6) 

z(a, ~ ) = 0  if dist(supp(0), a)>N1 

Moreover, for 8 of a high enough order we will set 

1 
z(a, O)-  if a e supp(O) 

Isupp(0)[ 

and x(a, 0 )=  0 otherwise; such Z will be called standard. Similarly, we call 
standard the weight function 

z(a, B)= 1/IB[ if a ~ B  

and z(a, B)=  0 otherwise. Examples of weight functions can be found in 
Section 4. In a variation of this scheme employed in Sections 4.2 and 4.3, a 
will label figures of the lattice---elementary cubes or the M-figures of 
Section 4.2--and • will be called standard (with respect to the family of 
figures) if ;~(a, 0) -1 l-resp. ~(a, B) -1] is the number of figures containing 
the m.f. 0 (resp. the bond B). While this definition of an effective potential 
is general enough to cover our examples, one can imagine a situation 
where a more compicated one may be needed. 

Suppose now that (2.6) holds and that Z is standard for all ~9 of high 
enough order. Then (2.3) implies that there exists ~ > 0 such that for any 
E/> Ek and only global ground state G 

jTE( G, a) -- f ( ek)( G, a) = O( e - #Ek + l) 

j~e( A, G, a ) - r e ( G ,  a)= O(e l~ "dist(a.AC)) 
(2.7a) 

and that, for G global or local, if dist(a, A") ~> N, where N is a large enough 
constant independent of G and A, then 

rE(A, G, a ) -  f~Ek)(G, a) = O(e -~Ek'~) (2.7b) 
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2.4. D o m i n a t i o n  and Peierls Condi t ion  

If the perturbative free energy of some of the ground states is smaller 
than that of the others, then it will be said that these ground states are 
dominant. More precisely, we will consider the following situation. 

Let ~b o be a finite-range periodic potential for a Hamiltonian H0 and 
let ~* be a finite family of (global periodic) ground states of Ho, 
~f*e ~(~o). Furthermore, let (Hi)7= 1 be a finite family of Hamiltonians 
with finite-range periodic potentials (~bi)7= 1, and for any parameters p = 
(#1,..-, #,) we set 

H ,  = Ho + ~, #iHi, (JD~ = ~0 ~- Z ]Ai{Di  
i i 

so that q~. is a potential for H~. We write sometimes q~B instead of ~b~,e. 
We will assume given a curve/~(. ):/~ ~ p(/~) in the parameter space,/? 

large enough, with 

p(fl)~O as fl ---, oe (2.8) 

(usually exponentially fast; however, in the situation described at the end of 
this section, /~p(/~) does not go to zero as /~-~ oe). For the Hamiltonian 
H~(~) we will consider the reduced partition function with boundary 
conditions defined by an element Y of the restricted ensemble 5f ~'e of a 
global ground state G: 

Z~ ret = X[ Y) = Z(A, ret = XI Y)/Ze(A I Y) 

Here the partition function Z~(A[ Y) of the ensemble XA r,e is as defined at 
the beginning of Section 2.3, X is a retouched excitation of G equal to G on 
the N-boundary of A (with N to be fixed later), and 

Z(A, ret = X[ Y) = ~ exp - fl ~ q)s(X') 
X': re tX '  = X  B c ~ A  va ;2~ 

where the summation is over excitations X' of G equal to G outside of A 
with retouch equal to X, and such that the elementary excitations of X' are 
compatible (see the beginning of Section2.3) with those elementary 
excitations of Y whose supports intersect the complement of A (see the 
beginning of Section 2.3). Whereas Z depends on the choice of the potential 
05, for H~, Z ~ does not. 

Def in i t ion .  With the above notation, we will say that the family 
~* is dominant (in order D) on the curve /~(.) if for any E>~ED there 

822/54/1-2-8 
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exists N > 0  such that for any Gefr  and Y, A, and X as above, the 
inequality 

Z~ ret=X] Y)<<.exp{-~'Ho(X)-c(E)e ~E~IA'(X)[} (2.9) 

holds for/~ large enough, wtih c(E) independent of G ~ f~*, A, and/~, and 
/~'= O(/~) as/~ ~ oo; here A'(X) is the set of points of A at which X is equal 
to the nondominant ground states: 

A'(X) = A\(supp(X) w {a ~ A: XEa, N ] ~ pr Ea.N ]fr } ) 

We will call (2.9) the fundamental estimation; when it holds we will say that 
the Peierls condition is satisfied. In fact, it is enough to assume that (2.9) 
holds for E = E D .  Then the general case follows, possibly by going to 
large/?. 

To make the Peierls condition easier to check in a particular model, 
we introduce the following notion (this is especially helpful when pertur- 
bations of the original model are introduced and one considers the 
complete phase diagram). 

De f in i t i on .  The family N* is locally dominant (in order D) on the 
curve #(.)  if for any E ~> ED there exist effective potentials f(E~(','), and 
N, c,/~o > 0 such that (i) if G ~ fr then fE(G, a) = rE(G), and fE(G) is the 
same for all G efr (ii) for any point a of the N-interior of dom(G) 

f(e)(G, a) >~ f(e)(G*, a) (2.10a) 

and if, in addition, GEo, t ? ~Prta, tl~q*, then 

f(e)(6, a) -- f(E)(G*, a) >~ ce -~Ev (2.10b) 

for G*efr  and /3~>flo. Here N has to be chosen in such a way that 
f(e)(G, a) is well defined, i.e., the m.f.'s which appear in it have support 
contained in dora(G). An effective potential satisfying (i) and (ii) will be 
called an effective m-potentiaL 

Remarks. 1. Conditions (i) and (ii) can be replaced by conditions 
which are (seemingly) less stringent but which imply the existence of an 
effective potential satisfying (i) and (ii). First, we will usually check that (i) 
holds with f(e) in place of fE. Then, by adjusting #(.)  slightly [-with a 
change of order o(e ~E)] one obtains a curve on which (i) holds. Second, 
in case the family H ,  removes the degeneracy of the ground states of f~*, or 
removes the degeneracy up to a symmetry, it is enough to have that 
f(E)(G', a')-f(e~(G", a")=o(e -~E~) for any G', G"~fr  and any lattice 
points a', a", and that a w-~f(E)(G, a) has the symmetry of the ground state 
G. Then, again by adjusting /~(. ) slightly and by averaging the effective 
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potential over translations, one obtains an effective potential and a curve 
on which (i) holds, Finally, suppose that instead of (2.10b) one has that 
there exists a positive N'  with the property that for any point a of the 
N-interior of dom(G) for which GEa.I ~ r there is a lattice point b 
such that [b - a[ < N'  and 

f(e)(G, b ) - f ( e ) (G* ,  b)>~ ce -~ev 

for G*~(~* and fl>>-fio, with N and N'  so chosen that f(E)(G, b) is 
well defined. Then again taking averages of f(e)(G, b) over b in the 
N'-neighborhood of a one obtains an effective potential for which (2.10b) 
holds. 

2. It is not hard to see that if the family N* is locally dominant on 
#(.) and fi(-) is another curve such that fi(fl) - Iz(fl) = o(e-~e"), then ~#* is 
locally dominant on/7(.). 

3. For most of the results it is sufficient to have f(e) defined in some 
finite range of E. 

Proposition. If c~, is locally dominant, then ~* is dominant in the 
same order. 

Proof. The proof depends on a rearrangement (2.16) of the low- 
temperature expansion of log Z ~ which exhibits it in terms of differences of 
effective potentials for which the bounds (2.10) can be used. This yields the 
[A'(X)I term in (2.9). Various error and boundary terms are absorbed into 
the difference between fl' and fl and into c(E). The term O([(?A[) does not 
appear, because of exact cancellations between the numerator and 
denominator of Z ~ at the boundary of A. A careful treatment of all these 
boundary and error terms makes the proof somewhat tedious. 

The notation below is as in the definition of domination. The com- 
plement of supp(X) in A decomposes into a number of connected com- 
ponents, possibly only one; there are two components in Fig. 3, where 
supp(X) is shaded and the vertical and horizontal lines indicate A'(X). Of 
these, one, the outer component, Aext, extends to the boundary of A, while 
the others, Ai, have boundaries adjacent to supp(X); the outer component 
is bounded by supp(X) in part. Restriction of X to the /-neighborhood of 
Ai (resp. Aext) defines a local ground state Gi (resp. Gext). Gex t is equal to 
the dominant ground state G = G(Y) on the N-boundary of A. We set A~ = 
A ~  A'(X). We consider first the quantity 

2 0 = 2(A, ret = XI Y)/2E(A I Y) (2.11 ) 

where Ze(AI Y) differs from Ze(AI  Y) in that the potential (~bB) is replaced 
by [(bB-- (be(G)], whereas in the computation of Z(A, ret = XI Y) one is 
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Diagram for the proof of the fundamental estimation (2.9). 

using the potential q~B-q~s(G~) for B cA~, ~B-q)B(Gext) for B cAo~t, 
and ~b~-q58(G ) for B intersecting supp(X) (we could have chosen here 
q~B--~bo,~ as well). We can write now 

2(A, ret = XI Y) = {exp[ - /3 / t (X)]  } 2E(Aext I Y, Gext) H 2E(A~ [G,) 
i 

(2.12) 

where 

/~(x) = y. [ ~ B -  e . ( 6 ) ]  
B: B c~ supp(X) # 

Ze(AilGi) is defined by the configurations of the restricted ensemble of Gi 
equal to Gi on the /-boundary of A~, while in ZE(Aext [ Y, Gext) one sums 
over configurations Z of the restricted ensemble of Gex t equal to  Gex t on the 
/-boundary of the complement of Aext, and such that elementary excitations 
of Z are compatible with those elementary excitations of Y whose supports 
intersect the complement of A on the /-boundary of A. We note that 
because of (2.1) and the assumption (2.8), for/~ large enough 

si Ix[ ~ B( x )  <<. s'~ ixI 
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for some positive s'l, s~. We now express the logarithms of the partition 
functions of the rhs of (2.12) in terms of the effective potential, and then do 
the same with log 2E(A I Y), and finally we exhibit the cancellation in (2.9) 
which yield the fundamental estimation. 

Substituting (2.12) into (2.11), we obtain 

log 3 0 = - fill(X) + ~ log 2E(Ail Gi) 
i 

+ log ZE(Aext [ Y, Gext) -- log ZE(A ] Y) (2.13) 

We show now that (2.13) can be rewritten as 

l~  2 ~  = -- fll/~r(X) - Z Z ~(Ai. Gi, a) 
i a ~ ] A i , N [  

-- 2 L ( A e x t ,  Gext, a) 
a ~ Aext, d i s t ( a ,  s u p p ( X ) )  ~> N 

+ Z L(A, G, a) + O(e -~N) IA'(X)I (2.14) 
a ~ A  

where/~1-  fl = O(e-P~l), and e is as in (2.3) and (2.7). 
To pass from (2.13) to (2.14), we first substitute for all the tog 2E their 

low-temperature expansion (2.2). For the interior regions we have 

log 2E(A~[ Gi) = - ~ jTe(A~, G~, a) + O(e -~E1) [0A~I (2.15) 
a ~  ] A i , N [  

which accounts for the first two terms on the lhs of (2.14). In particular, the 
boundary term in (2.15) is responsible in part for the change from/~ t o / ~  
[52 Ic~Ai[ ~< O([X[ )]. 

r ~  Next we note that ~bE( , Y) for ~9 at the boundary of A (0~hort on 
Fig. 3) is the same in log 2E(A~xt [Y, G~xt) and log 2~(A [ Y), except for the 
O's intersecting both supp(X)uA'(X) and 0A--the long O's (0~o,g on 

r 0 Fig. 3). The sum of ~bE( , Y) over long ~9 has by (2.3b) a bound of the form 
O(e ~N)[[supp(X)] + [A'(X)I ], since dist(A'(X) w supp(X), A ~) ~> N. Thus, 
by adding to both log 2e(A~xt[ Y, Gext) and log Ze(A[Y) first the same 
combinations r of ~bE(~, Y) with ~9 not long and then by adding combinations 

T# of ~bE( , Y) with long 0 we arrive at (2.14). 
Relation (2.14) and the reasoning leading to it yield a similar expan- 

sion for Z~ 

log Z~ ret = XI Y)= - f l 2 f f I (X) -  ~ ~ fe(A~, G~, a) 
i a ~ ] A i , N  [ 

- ~ fe(A~xt, G~xt, a) 
a ~ Aext,dist(a, s u p p ( X )  ) ) N 

+ ~ fE(A, G, a) + O(e -~s) [A'(X)[ (2.16) 
a ~ A  
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Indeed, we have 

log Z~ ret = XI Y) = log 2 0 +/3 ~ ~, [~e(G,)  - ~bB(G)l 
i B c A i  

B c Aex t 

(2.17) 

where the last term originates in B intersecting the support of X, and one 
has the factor 0(/3) since, by assumption, ~b,(~),B-- ~/'0,~ ~ 0 as /3 ~ ~ .  To 
pass now from (2.14) to (2.16), we rearrange the sums of (2.17) into a sum 
of ~ea's, taking into account that linear combinations of terms of the form 
q~B(Gi) or q~8(G~t) which one may have to add in going from (2.14) to 
(2.16) are either canceled by the same combinations of ~bB(G) (B at the 
boundary of A) or taken care off by changing slightly/3~. 

To complete the proof of (2.9), we use (2.7) and (2.10) to get 

2 
a ~ ]Ai, N[  

[f~E)(Ai, Gi, a ) - - f ( E ) ( A ,  G, a)]  >~ O(e aE~ (2.18) 

and 

[fe(Aext, Gext, a ) - f e ( A ,  G, a)]  
a E Aext, d i s t (a ,  s u p p ( X ) )  >~ N 

>~ O(e ae~)[Aex t c~ A'(X)I (2.19) 

Using the bounds (2.18) and (2.19) for terms of (2.16), one finally obtains 
(2.9). 

2.5. M a i n  Results 

As in the PS theory, we imbed the original Hamiltonian Ho into a few- 
parameter family of Hamiltonians and analyze the phase diagram in the 
space of these parameters. We first state our main result, and variants of it, 
some of which are more suitable in the applications of Section 4. Let 
H1 ..... Hg ~ be a family of finite-range Hamiltonians, and 

H~, = H o + ~, ]AiM i 
i 

We say that we have a complete phase diagram in a subset U of the /~ 
variables if there is an invertible map p ~-~ t(p) such that both t and t 1 are 
Lipschitz continuous, and which maps U into a neighborhood of the origin 
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of the boundary of the positive octant {(xc): minG x~ = 0} of Ra such that 
the pure thermodynamic phases (extremal periodic Gibbs states) are small 
perturbations of those ground states G for which t(#)G = 0, as in the PS 
theory. Define the perturbative phase diagram by the map # ~-+ te(#): 

tE(#)G = fu(#,  G ) -  min fE(#, G') 
G'  

[fE as in (2.5)], and the zero-temperature phase diagram by the 
map # ~ to(/,), 

to (#)a  = e c ( H v )  - min eG,(H~) 
G' 

where for a Hamiltonian H with a periodic potential 45 and a periodic 
configuration G we set 

1 
eG(g)=liAm~- ~ Z q~M(G) 

M c A  

We say that the set of  perturbations removes the degeneracy of  the ground 
states, if the zero-temperature phase diagram is complete. This last con- 
dition is equivalent to the invertibility of the ( g - 1 ) x  ( g - 1 )  matrix A 
with elements 

A i. G = ec (Hi) -- ea,(Hi), 

Using (2.4) and standard bounds on ~b r, we obtain 

d#---~f~(#,a)= eG(H~)+O(e-q=eG(Hi)+O(e-~) 

and also the bound 

i = l , . . . , g - - 1 ,  G, G' eC~ *, G r  

(2.20) 

~ fE(#, ~ const (2.21) G) 

From (2.20) and the inverse function theorem it follows that the pertur- 
bative phase diagram is complete, for # small and fl large, if the zero- 
temperature one is complete. 

T h e o r e m  B. Let H o satisfy the retouch property and Condition 
(2 ')  of Section 3.3. Assume that we have a function fl ~-+ #o(fl), which tends 
to 0 as fl goes to infinity, and a family ~* of g ground states of H o which is 
locally dominant in order D on the line /%(. ). Furthermore, assume that 
the family H 1 ..... Hg 1 removes the degeneracy of the ground states of ~*. 
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Then for any large enough E >~ ED there exists /?o(E) and c~ > 0 such that 
for any /? >/?o(E) there is a complete phase diagram in the wedgelike 
region 

i/.t _/.to(fl)l ~< o~(,SeBeO)-3/2 (2.22) 

Moreover, this phase diagram is a small deformation of the perturbative 
one, in the sense that it is given by a map t such that 

It l - - t{ l l  <~e-~E/2 

Extensions, Al ternat ive Versions of Theorem B, and Comments 

1. Taking E larger and larger, the last statement yields an asymptotic 
expansion of the phase diagram. 

2. The 3/2 in (2.22) is replaced by another positive constant if the 
dimension is larger than 3. 

3. One can prove a useful version of Theorem A by taking into 
account the symmetries of the system. Namely, let G be a group of 
symmetries of Ho, and suppose that each Hi, i=  1,..., n, is G invariant. 
Then one has a modification of Theorem A in which fr is replaced by the 
family ~*/G of classes of G-equivalent ground states and the number n of 
perturbations is equal to the number of classes. 

4. Assume that there is a set .,U in the space of the parameters (/~, #) 
and a finite family of ground states equivalent under symmetries of both Ho 
and Hi which locally dominates to order ED [-with the constant c in (2.10) 
fixed throughout o~]. Then, in some neighborhood of Jr,  the pure phases 
are small perturbations of the ground states of ~*. 

Combining this remark with Theorem B, one can obtain by "patching" 
different regions of parameter space a complete description of the phase 
diagram in a domain larger than the one given by Theorem B. This is 
illustrated on some of the examples in Section 4. 

5. The definition of the excitations and therefore also of the restricted 
ensembles depends on the constant 1. However, using the cluster expansion, 
one can see that with changed l one obtains the same f(el, and therefore 
the same perturbative phase diagram. 

6. Instead of assuming that the perturbations remove the degeneracy 
of the ground states, we can consider the more general situation where the 
perturbations remove the degeneracy of the restricted ensembles, i.e., they 
change the energy of the excitations, but possibly not of the ground states. 
A simple example where this occurs is given by the Blume-Capel model 
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(for a detailed discussion of this model from the point of view of the PS 
theory, see ref. 32). This is a spin-1 model, with spin variables sa taking 
values - 1 ,  0, +1 and with the Hamiltonian 

Lr0 = (so- b) 2 
n . n .  

where the sum extends over all pairs of nearest neighbors. As explained in 
ref. 32, there are three ground states G +, G o , G -  of H 0, equal 
+1, 0, - leverywhere ,  respectively, and the ground state G o is dominant. 
Now, we consider a one-parameter family of perturbations/2 ~a  ~ba, where 
~bo(X)= - 1  if X , = 0 ,  X a _ e l m X a + e l  = +1 and ~b~(X)=0 otherwise. 

Clearly, this perturbation does not change the ground states (for /2 
small), but it does affect the energies of the excitations. Actually, when 
/2 > 0, the G + ground state is favored, and there exists a line 

#(fl) = ~ In 2 + O(e c~) (2.23) 

on which the G o and the G + phases coexist. Note that fl/2(fl) does not 
approach 0 as fl ~ Go any more. The calculations which yield (2.23) are 
straightforward; in more complicated cases the Newton-polygon techniques 
should prove useful. 

With this kind of system in mind, we say that a family H~ ..... Hg_ 1 of 
perturbations removes the degeneracy of the restricted ensembles if the 
matrix A, 

H a H G' Ai.a=( i )E- - (  i)E, G e G ,  i = l , . . . , g - - 1  

is invertible, where ( H ) ~  denotes the mean value of the energy in the 
restricted ensemble of the excitations of the ground state G with energy less 
than E (thus, A depends on E). 

In that case, there exists a c such that [rA-~l[ ~<e c~ (because all the 
matrix elements of A, and therefore also the determinant of A, have a 
convergent low-temperature expansion). Assume now that we have a line 
go(fl) on which the ground states of N* dominate in order ED, and the 
free energies fE(G) are independent of GEN*.  Assume that the family 
H1,..., He_ 1 of perturbations removes the degeneracy of the restricted 
ensembles in the above sense. Then, if E = E(ED, c) and fl are large enough, 
there is a complete phase diagram in the wedgelike domain: 

[/2 - #0(fl)[ ~< e ''~ 

with c' > max(c, ~ED). One can also prove a version of this in the presence 
of symmetries. 
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3. CONTOUR MODELS, PEIERLS BOUND, AND PROOFS 

We introduce here first the large-scale contours, and then write 
down the recursion realtions satisfied by the various partition functions 
(Section 3.2), prove the Peierls bound (Section 3.3), introduce the contour 
models (Section 3.4), and finally in Section 3.5 we prove the theorems. 

3.1. Contours 

Let L be the smallest even integer >~(/3e~E~) 1/2 and let C o be the 
(closed) cube centered at zero with an edge length L. Co will also stand for 
the intersection of the cube with the lattice. For  any a ~ 7/d 

Ca = Co + �89 La 

will be called a cube in this section; the "cubes" of the next section are 
smaller. We note that if two cubes, say C and D, do not overlap, then 
dist(C, D) >1 L/2, where the distance is defined as in Section 2.1. A region is 
a subset of the lattice which is a union of a finite collection of cubes or a 
finite connected component of the complement of such a family. ]AIL will 
stand for the number of cubes contained in A, and for any collection M of 
cubes, _M will denote the union of cubes of M. 

Fix l < L, and let G be a ground state defined in the /-neighborhood 
EC, l] of C; C is a G-cube of a configuration X if X is defined on EC, l] and 
ret(X)ec.t ~ = GEc.t~; C is a regular cube of X if it is a G-cube of X for some 
G ~ ~*. Otherwise, C is an irregular cube of X. 

Irregular cubes can be two types. Cubes of type I are G-cubes for some 
G E fg\fr Hence, if C is a (type H) cube of a configuration X, then there is 
an elementary excitation of X of large energy with support intersecting C. 
As in the PS theory, one has an extension property of the ground states of 
if*: regular overlapping cubes are of the same kind, i.e., they correspond to 
the same elements of fq*. Connected families of cubes and components of 
such families are defined in the usual way. 

A contour F is a pair (M, X), where M is a finite component of the 
family of the irregular cubes of a configuration, say Y, and X is the restric- 
tion to the/-neighborhood of 34 of the configuration obtained from Y by 
removing all the low-energy excitations with support not intersecting M. 
We need this somewhat involved definition to avoid troubles with 
excitations whose supports intersect the /-neighborhood of _M. We call M 
the support of F, supp(F). 

We adapt to our situation many definitions of the PS theory. In 
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particular, for a contour F and G in ~q* we introduce the notion of its 
G-interior, I n t c ( F  ), of G-contours, and we set 

and 

I n t ( F ) =  U I n b ( F )  
G ~ J *  

vc(F) = [IntG(F)l, v(F) = IInt(F)l 

IFI = Isupp(r)l,  IflL = Jsupp(F)lL 

]MIL denotes the number of cubes in M; IM[c is of the same order as the 
number of cubes contained in M (in an obvious sense). We write M e  A if 
each cube of M is contained in A. For  any family ~ of contours, 0(~o) is the 
union of supports of the contours of ~0 and their interiors; we write O(F) 
instead of 0({F)) .  One defines also the contour map 7 (resp.: exterior 
eontoblr m a p  ~ext), which assigns to every configuration the family of all its 
contours (resp.: its exterior contours). 

3.2. Recursion Relations 

For any G ~ ~q*, Y~ W c'E, and a region A we set 

Z~ t Y) = Z(AI Y)/ZE(AI Y) 

Here 

Z(A I Y) = ~ exp - fl ~, ~B(X) 
X Bc~A=/=~ 

where the summation is over (global) configurations X equal to G on the 
complement of A and such that (1) the elementary excitations of X are 
compatible with those elementary excitations of Y whose supports are not 
contained in A, and (2) each irregular cube of X is contained in ]A, L/2[. 
The ZE(AI Y) is defined by restricting the summation to X with retouch 
equal to G (see the beginning of Section 2.3). One has 

Z~ Y):~Z~ 7~x'= ~J Y) (3.1) 
~o 

where the sum is over families of mutually exterior G-contours with sup- 
por t contained in ]A, L/2[. For any such family e) define its interaction 
energy UA(COI Y) by 

Z~ Text=colY)=e uA(~ I- I Z~ (3.2) 
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U~ has its origin in fluctuations in the restricted ensemble and it can 
expressed through the corresponding partition functions: 

e_U,(~oly) - ZE(A\O(co)t I1, co)/Ze(AI Y) 
(3.3) 

FI,-~o EZ~(A\O(F) I I1, r)/ZE(A I Y) ] 

where Ze(.  [Y, co) has boundary conditions defined in part by Y and in 
part by the contours of co, in the obvious sense; ZE(. [ Y, F) and Z~ �9 IF) 
below are defined similarly. Furthermore, define the surface part ~A(F] Y) 
of the contour free energy through 

ZO(A, ~ext= { r } l  Y) 

=expE--0A(F1Y)] I ]  exp{vG(F)[fe(ulG(Y))- fe(#1G)]}  
G Q N *  

x Z~ I F) (3.4) 

By the obvious identity 

Z~ 7 T M  = {r}l Y) = Z~ 7 = {r}l Y) lq z~ l r) 
G s ~ *  

this definition is equivalent to 

4~A(rl Y) = - log  Z~ 7 = {F} Y)+ ~ v~(r)Ef~(#lG(Y))-f~(#1G)] 
G ~ *  

(3.5) 

When all elements of ~* are equivalent and # = 0, or, more generally, when 
# = # o  and the condition (i) of the definition of local domination is 
satisfied, (3.4) takes the form 

Z~ A, 7 = {C}l Y) = e q~A(rl Y) 

The infinite-volume limits 

0 ( F )  = lira 0 A ( r l  g ) ,  
zl 

Z(F) = lim Z ~  )~ext = { / , }  I Y) 
A 

(3.6) 

exist and depend on Y through G(Y) [ = G ( F ) ]  only; Z(F) corresponds to 
the crystal partition function of PS. With these definitions, taking the 
infinite-volume limit in (3.4), one obtains the identity 

Z(F) = e -O(r) [-[ exp{vG(F)[ f (# lG(F))- f (# lG)]  } Z~ 
G ~ aJ* 

(3.7) 
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Defining 

WA(o~l Y)= uA(o~l Y ) -  ~ [~A(FI Y ) - 0 ( r ) ]  (3.8) 
F ~ o ~  

the fundamental recursion relations take the form of a combination of (3.7) 
with 

Z~ Y ) = ~  e-W~(~'r) I-i Z(F) (3.9) 
co / ' f f cO 

where the summation is over all the families ~o of exterior contours, as in 
(3.1). # is here implicit, and Z(F) can be expressed through the reduced 
partition functions, as in (3.7). 

The interdependence between the contours is expressed by W, which 
can be viewed as a weak many-body interaction between them. We shall 
show that for large/3 this interaction is weak indeed. 

3.3. The Peierls Bound 

We prove here our main estimate, (3.10) [or (3.11)] below--the 
Peierls bound. It says that the activities of the large-scale contours of 
Section 3.1 are small, which will imply that in the Gibbs states defined by 
the dominant ground states, the contours are unlikely. This estimate is 
similar to that of the hypothesis A2i of BKL. It could be called a Peierls 
condition for (large-scale) contours. It is proved below to hold under the 
following additional hypothesis. 

Condit ion (~o). If C is a cube of edge length L and Ge(qc\~*, 
then IA'(G)[ ~> L 2. 

In the models considered later, Condition (58) is satisfied, since for 
each cube of type II, A'(G) consists of a number of planes, or layers. EWe 
expect Condition (5 ~ ) to be in general related to the degree of degeneracy 
of ground states, as discussed in Section 5.5.] 

I .emma. The retouch property and Condition (58) imply that if the 
ground states of ~q* are dominant on a curve/~0(') and the cutoff energy E 
of the effective potential is chosen large enough (for instance, larger than 
~ED in three dimensions), then there exists c~ > 0 such that for. all large 
enough /3, for any region A of the lattice and any collection M of cubes 
contained in the L/2-interior of A 

e-*A(rl r) <~ e-PFMIL (3.10) 
s u p p ( T )  = M 
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where p - = C l f l  , 0 1  is given by (3.5) with g=#0(/~), and Y is any con- 
figuration of the restricted ensemble of a ground state of N*. (We recall 
that the contours are defined on a temperature-dependent scale.) 

(A simple case, which, however, illustrates the most important points of the 
proof, can be found in the Appendix to ref. 4; an error in that appendix is 
corrected below.) We have to prove that 

Z~ 7= {F} I Y)<<.e -pl~l~ (3.11) 
s u p p ( F )  = M 

[see (3.6)]. To deduce (3.11) from the Peierls condition (2.5), we estimate 
the lhs of (3.11) by first fixing a subfamily M 2 of M and restricting the 
summation to those contours F which have M 2 as the family of cubes of 
type II. We obtain 

2 Z~ A, 7 = {r}] Y) (3.12) 
X: ret, M 2 ( X )  -- M 2 r e t ( F )  = X 

where the first sum is over the family of all the retouched excitations X 
having M 2 as the family M2(X) of cubes of type II, and the second is over 
contours F =  (M, X') for which re t (X ' )=  X. The last condition is written 
as re t (F)= X. By M~(X) we denote the family of cubes of type I of X 
(Section 3.1 ). 

Using the fundamental estimation (2.5), we bound (3.12) by 

exp{ -~ 'H(X)-  c[exp(-/3ED)] IA'(X)I } (3.13) 
X:re t ,  M 2 ( X )  = M 2 

By definition of M:(X) for each cube of M 2 there is a large-energy elemen- 
tary excitation of X with support intersecting the cube; by the Condition 
(5('), IA'(X)I >~LZlMllL (where ~-~ is the number of cubes overlapping 
with any fixed cube). Therefore (3.13) is bounded by 

exp[-c~LalMllL exp(--/~ED)] 
M I u  M2= M, MI  c~ M 2 ~  ~ 

x ~ exp[ --/~'H(X)] (3.14) 
X:ret, M2(X) = M 2 

Clearly, if we show that 

e -~'mx) <~ (cL3e ~'E)~'IMZlL 
X: ret, M 2(X) = M 2 

(3.15) 

with ~' >0,  we can finish the proof of the Lemma as follows: Insert (3.t5) 
into (3.14) and use our definition of L [ =L(/~) = (c~e~ED)~/2], and choose 
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E>/ 3ED, which imply that L2e ~ED= Cfi while L3e-~'E <~ e ~'~ for fl large. 
Then, since rMIL = IMIIL + IM21L and since the first sum in (3.4) contains 
at most 2 IMI~ terms, (3.10) follows. We now prove (3.15). 

Observe first that for a fixed cube C 

~, e ~'H(x)<<.cL3e -p'E (3.16) 
X:ret, M2(X) = C 

Indeed, let ~/~1,'", X n  be the elementary excitations of X. The supp(Xr is 
connected for each i, supp(X~)c~ C r  Z and H(X~)>>. E (X is retouched). 
Therefore the lhs of (3.16) is bounded by 

e-~"(x~ (3.17) 
n = l  X:supp(X) caC~@,supp(X)conn,  H(X)>~E 

The sum starts with n = 1 because of the condition M2(X) = C. Clearly, by 
a standard Peierls estimate, 

~, e-#H(X)~cL3e rE (3.18) 
X:supp(X) c~ C r ,~J,supp(X)conn, H(X) ~ E 

L 3= I CI counts the number of possible "origins" of the connected set 
supp(X). Inserting (3.18) into (3.17) yields (3.16), since L3e -~E is small, 
and e ~' - 1 ~ y for y small. 

We now return to the proof of (3.15). We would like to use (3.16) and 
to extract from (3.15) a factor equal to the rhs of (3.16) for each C in M 2. 
We cannot quite do that because the same connected components of X 
may intersect several cubes and we would have overcounting. [This was 
the error in (A.23) of ref. 4.] To avoid that, let ~r be a maximal subfamily 
of M 2 with the property that it does not contain any pair of cubes with dis- 
tance less than L (in units of the original lattice). Then if C, C'  belong to 
29I 2, [C, L/4] and [C' ,  L/4] do not intersect. 

Let X~ ..... X, be the connected components of X. Observe [use (2.1)] 
that since supp(X) is connected and H(Xi)>~ E, 

H ( X ~  [C, L/4])  ~> E (3.19) 

if supp(X) ~ C r  ~ (since L is large). 
Let X~ ..... X k, k ~< n, be the connected components of X intersecting a 

cube of ~2 .  Then 

[ I  exp[ -- fl'H(Xi) ] ~< exp {c fexp( -  fl'E)] [ w M2[} (3.20) 
(x,)7=k + 1 i 
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by an estimate similar to (3.16), except that the sum [see (3.17)] does not 
necessarily start with 1 (there may not be any Xi, i >  k). We have 

(3.20) ~< exp [exp( - cfl')] IM21L 

for some c > 0 ,  because LM21 ~L3IM2IL and 

L 3 e  - ~ ' e  ~ e-'~ 

We fix now the restrictions of Xi to [C, L/4], i= 1 ..... k so that 

H(Xi)= ~ H(Xic~ [C, L/4])+ H(rest) 
C ~ ~71 2 

and sum over the remaining parts of the 3(,-. This sum is bounded by 

exp [ e x p ( - c p ) ]  ~ ~ IXi& [C,L/4]I  (3.21) 
i = 1  C e / ~  2 

for some c > 0; this is similar to (3.20). We get e -ca instead of e -~e in 
(3.18) because the remaining part need not have energy ~>E. However, 
since the Xi are connected, these remaining parts must be connected to 
some X ~  [C, L/4] (for some i or C), which gives the volume term in 
(3.21). 

Finally, we sum over X i n [C, L/4]. These are disconnected and (3.21) 
gives only a small correction to ,6'H(Xjn [C, L/4]). Using (3.19), we get a 
bound like (3.15) from this sum for each cube in ~2 .  But iM2L/~ >~ ~' IM2lc 
for some a' >0,  which yields (3.15). 

3.4. Contour Models 

The main idea in the PS theory is to relate the real models to contour 
models. Here, following BKL, we define our version of the contour models. 
However, unlike in the PS theory, where the contours interact only 
through hard-core exclusion, we have to consider so-called "interacting 
contour models" where on top of the hard-core exclusion one has a weak 
long-range many-body interaction, given here by WA(oJ, Y) in (3.8). This 
generalization is encountered, in one form or another, in most extensions 
of the PS theory. (3'9'44) We regard it as more or less standard. Therefore, 
we shall simply recall here the definitions and results, refering to BKL, 
which we shall closely follow, for the details of the proofs. 

We define a contour functional F as a real-valued function on the set of 
contour configurations satisfying 

IIFIL = sup[lf(F)/lsupp(F)l < oo (3.22) 
F 
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and a v-functional as a contour functional for which 

e -F(r) <~ e -T)MIL (3.23) 
s u p p ( F )  = M 

This is the analogue of BKL, (3.12); (3.13) of BKL is not needed. As in 
BKL, we observe that ~bA are v-functionals, by (3.10). Given a v-functional 
F, we define the dilute partition function 

Z ( A ; F I Y ) = Z ( A ; F ,  p I Y ) = ~ e  w~(~ol~) ~l Z(F;F) (3.24) 
c_o F E co  

where W is defined by (3.8), # is implicit in W, and the summation extends 
over all families ~o of mutually exterior G(Y) contours, as in (3.1); and the 
crystal partition function 

Z(F; F) = e -F(F) H Z(Intc F; F] F) (3.25) 
GETS* 

where, as in Section 3.2, Z(IntG F; F] Y) with any Y having F as a contour. 
These partition functions are defined recursively by the identities (3.24) and 
(3.25), starting with Z(A; F]Y)= 1 if no G(Y) contour is contained in A. 
They depend on kt via W. Note that the relation betwen crystal and dilute 
partition functions is similar to the fundamental recursion relation (3.9). 

One has the following estimates on the free energy of the contour 
models: Let Y~ ~G.E, 

1 
s(F, /~) = l i r a  ~ log Z(A; F[ Y) 

VII 

The limit here exists, and is independent of the boundary condition 
y ~  y'G,E. We write 

log Z(A; F[ Y) = s(F, I~)]AI + A(A; F, ~t[ Y) (3.26) 

Note that we define s(F, p) on the scale of the lattice [, while it would be 
natural to define it on the large scale (i.e., by dividing by lAIr instead of 
[A]), since the contours are defined on the scale. We do it because it is 
more convenient to have all the free energies defined on the same scale. 
Note, however, that with this definition we have the bounds 

Is(F,~t)l<~o(e ~)L -3, fA(A;F,~tly)l<~o(e-~)l~AiL 3 (3.27) 

The proof of (3.27) is fairly standard (see BKL for details). Inserting (3.24) 
into (3.25) and iterating, one obtains a sum over all families of contours, 

822/54/1-2-9 
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not necessarily exterior ones [-see BKL, (A.17)]. These contours interact 
via hard-core exclusion and via W, denoted ff7 in BKL. Inserting the 
cluster expansion (2.2) into the definitions (3.3) of U and (3.8) of W, one 

r 0 sees, as in BKL, (A.19), that all ~be( , Y) cancel out except possibly those 
for which sup(0) intersects the support of several contours or the suport of 
one contour and the boundary of A (these latter terms are absent in BKL, 
Appendix 2). In order to work always on the L lattice, let us define the 
interactions on the L lattice by resumming all ~'s contained in a given set 
of cubes. Now, we combine the following three facts: (I) the distance 
between two contours, in units of the original lattice 1_, is at least L, and 
similarly for the distance between a contour and the boundary of A; (2) 
standard estimates show that r ~bE(01 Y ) decay exponentially with supp(0) 

T [BKL, (A.21)]; (3) ~bE(01Y)=0 unless 0 is connected. Then we obtain 
that the interaction between the contours is very small indeed: it decays 
like e Ld, where d is the distance in units of L. This still holds after the 
resummation mentioned above, because the latter multiplies this bound by 
a factor of order L 3 at most. Also, in the bounds on the derivatives with 
respect to # (BKL, pp. 535-536), one may replace O(1) by e -~ We shall 
not discuss these improvements in more detail, since we shall not need their 
full strength. Then we can perform a high-temperature expansion of the 
interactions in W, as in BKL, (A.22), obtain a polymer model like BKL, 
(A.25), where the polymers are made of cubes, and derive (3.27) from stan- 
dard estimates on polymer models. The factor L -3 in (3.27) comes simply 
from bounds similar to BKL, (3.15) and (3.16), if one defines the free 
energy per unit of the large-scale lattice. We also have standard Lipschitz 
estimates: 

Is(F1, tq)--s(F2, #2)1 ~< O(e-~)(ltF~ --F2i[-k I/*1--#2]) 

and 

13(A;FI,#llY)-A(A;Fz,#2IY)I<<,O(e-~)(IIF1-F21+]#,-#2[) (3.28) 

We shall also need contour models with parameter. These are defined 
by the partition function 

Z(A;F,b,#lY)=~ebV(~ ~I Z(F;F) (3.29) 
r F ~ co 

and satisfy the following estimates: Define A by the relation 

log Z(A; F, b,/'1 Y) = Is(F) + b] IAI + A(A; F, b, #1 Y) 

Then 

d(A; F, b,/~i Y) ~< O(e ~)I~?AI 
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and 

IA(A; F~, ha, #11 Y~) - A(A; F2, b2, #21 Y2)] 

~< 2 [ba - bz[ IAI + 2 IAI e ~ -a~a)/2 IIIF 1 _ F2111 

+O(1)l#~-~2t+O(e a) t~A[ (3.30) 

with 

]F(F)I e (,/2)6(F) (3.31) Hbrll[ = sup 

where cS(F) is the diameter in the large-scale units, while 10(F)] is the small- 
scale size of O(F). With this norm one has also 

Is(F1,/zl)-s(F2, ~2)1 ~ O(e-~)(IrlF1 - F2111 § I#, - lz21) (3.32) 

The bounds (3.30) [resp. (3.32)] are analogous to BKL, (3.21) [resp. 
BKL, (3.17)], and the proof is as in BKL, except that for (3.32) one uses 
the extra factor of]CI = L 3 in the definition of s(F, #) in order to cancel out 
the one coming from ]0(F)] = ]C] I0(F)[r in the norm (3.31). 

The proof of (3.30) is even simpler than that of BKL, (3.21), since the 
particle number estimates are not needed. 

3.5. Proofs 

The proofs will closely follow those of BKL, Theorem 6, with which 
we assume some familiarity. The only new ingredient here is the introduc- 
tion of the temperature-dependent contours. This requires a new proof of 
the Peierls bound, which was given in Section 3.3. 

In both Theorems A and B, one has two statements: One of them 
asserts the existence of Gibbs states which are small perturbations of the 
corresponding dominant ground states. The other is a uniqueness result: 
there are no extremal periodic Gibbs states other than the ones con- 
structed. The proofs below, following refs. 3, 29, and 30, deal with the first 
statement only. There exist several proofs of the uniqueness result in the 
standard PS framework (refs. 16, 24, 28, 38; also Preiss, unpublished 
results), which can be presumably adapted to the present situation. An 
independent proof along the lines of the Appendix of ref. 4 is given in the 
Appendix here. 

Proof of  Theorem A. Clearly, this theorem may be deduced from 
Theorem B (set #o=f io=0) .  However, since Theorem A can be proved 
without using contour models with parameters, we discuss this simple case 
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first. Actually, since all the ground states of ~* are equivalent, one could 
probably prove Theorem A without using contour models at all, in the 
spirit of refs. 17 and 18. However, since these symmetries are not 
necessarily pointwise ("spin flips"), but include lattice translations and 
rotations, it is simpler to use contour models. Thus, we want to find 
contour r-functionals F =  (FG)c~ .  such that 

Z(F; F) = Z(F) for any contour F 

with 

(3.33a) 

s(FG) independent of G (3.33b) 

[Uniqueness of solution of (3.33a) implies that FG, and FG,, are related by 
the same symmetries of the Hamiltonian which relate G' and G", and also 
that if F is a r-functional, then s(F~) is G independent.] Once such 
functionals are found, the rest of the proof is standard. (29'3~ Comparing 
(3.9) and (3.24), we obtain 

Z~ Y) = Z(A; Fc(r) l Y) 

Inserting this into (3.7), using (3.26) and taking logarithms, we obtain that 
the contour functionals must solve the equations 

FG(F)=  ~ ( F ) +  ~ A(Inta, F;FctF)-d(IntG, r ;F~, l f )  
G '  E fs  

Using the fact that gt is a z-functional (with ~ =p) ,  which follows from 
Lemma 3.3 (with/ t  o = 0), the Lipschitz bound (3.28), and the contraction 
mapping principle, one obtains a solution of (3.33a) in the Banach space 
defined by (3.22), satisfying (3.33b) and (3.23) with r = p/2. 

Proof of Theorem B. We explain first how the proof may be reduced 
to BKL, Theorem 6. Then, for the sake of completeness and because it is 
not so easy to read off the precise region in the parameter space where our 
results hold from BKL, Theorem 6, we sketch the proof of the theorem. 

The basic Hamiltonian H of BKL is the H~0(~ ) here, for fl large. With 
each dominant ground state we associate the restricted ensemble of its 
excitations of energy less than E. Thus, we have g restricted ensembles, 
each of them diluted (assumption A1 in BKL) by the estimates of Sec- 
tion 2.3. Note that in the definition of these restricted ensembles, the large 
scale does not appear yet. The Peierls Condition (assumption A2 in BKL) 
is defined by going to the large-scale lattice, as in Section 3.1. This is the 
major difference with respect to BKL. In BKL, Peierls Condition consists 
of two bounds: part (i) follows from our assumptions and Lemma 3.3, but 
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with I/'l of BKL replaced by IFIL, the number of large-scale boxes in 
supp(F). We shall not need part (ii) of A2 of BKL. Assumption A3 is 
exactly our hypothesis that the free energies fE(#IG) are independent of 
G � 9  f9*. The smoothness A4 of the perturbations is trivial here since the 
restricted ensembles clearly remain dilute for #- /~0 small. In particular, 
BKL, (2.8) holds [see (2.20) and (2.21), which is stronger, since we do not 
have p on the rhs]. Finally, our assumption that the perturbations remove 
the degeneracy of the ground states implies that BKL, (A5) holds, i.e., that 
the perturbative phase diagram is complete. The constants in BKL, 
Theorem 6 are related to the E and fl here as follows: e 0 measures the 
diluteness of the restricted ensemble and can be made as small as one 
wishes by taking fl large, p is proportional to fiE (see Lemma 3.3). Follow- 
ing the proof of BKL, as we do below, one sees that the t /o f  BKL can be 
taken equal to O~(fle'~ED) -3/2, for /~ and E large enough, which yields the 
proof. 

Now we follow the proof of BKL. The recursion relations are essen- 
tially the same (except that they are defined on a large scale), and were 
discussed in Section 3.2. Equation (3.9) here replaces Lema 2 of BKL. As 
for Lemma 1 of BKL, it holds essentially unchanged, except for the change 
of scale again. Part (a) was discussed in Section 3.2 and part (d) is not 
necessary; the other two parts take the following form. 

(b) There exists a c such that 

d 

for any # satisfying (2.22) and any Y�9163 G'e. This follows from (2.18). 

(c) For any kt satisfying (2.22), 

e -  ~,A(rl Y)< e-plMiL/2 (3.34) 
s u p p ( F )  = M 

which is proved as in BKL, using the fact that # satisfies (2.22) and 

I CI ~(/~e ~E~) -3/2 ~< 

(3.34) shows that 5 u is a r-functional with v = p/2, not only on Po('), but 
also in its neighborhood given by (2.22). 

Now we use contour models with parameters. For each # satisfying 
(2.22), we need v-functionals F e and parameters be, G �9 N*, such that 

Z(F) = ebG~(r)Z(F; F) for any contour F (3.35a) 

and 

be = fe(~t I G) - s(Fa, I~) + ~ (3.35b) 
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where ~ is determined by the condition that min G ba = 0. These equations 
are equivalent to 

Fc(F) = ~U(F) + ~ {A(IntG, F; Fc, /~]F)  - zl(IntG. F; Fe,, be,, #IF)} 
e ' ~ *  

which can again be solved by the contraction mapping principle in the 
Banach space defined by (3.31) using the Lipschitz bounds (3.30) (see the 
proof of Theorem6 in BKL for more details). As in the proof of 
Theorem A, the only crucial point (apart from the estimates on the contour 
models) is the fact that ~ is a z-functional, which follows from Lemma 3.3 
and (3.31). The phase diagram for # satisfying (2.22) is given by the 
map # ~-~ t(#), t(#)a = be (be depends on #!), which is Lipschitz by (2.18) 
and (3.32). That the inverse map is Lipschitz, too, is also proved as in 
BKL. 

Remarks to the Proofs of the Extensions of Theorem B. We need 
to consider remarks 4 and 6 only. Remark 4 holds because, wherever we 
have local domination and equality of the free energies fE(#IG) for G in 
~f*, which here follows from the equivalence of the ground states of (r 
Lemma 3.3 holds, and this shows that ~u is a z-functional. Then one may 
simply repeat the proof of Theorem A: from the definition (2.9) and local 
domination and the bound (2.18), it is obvious that if local domination 
holds in Y ,  it holds in a neighborhood of it (possibly with a smaller c, 
uniformly in the region Y) .  

Remark 6 is somewhat more delicate, but there are only two points to 
check: The first thing to show is that the perturbative phase diagram is 
complete, since the first term in the rhs of (2.17) may now vanish. This, 
however, still follows from the inverse function theorem, for /~ satisfying 
(2.22), because we assume that A, which is the matrix of partial derivatives 
offE(pl  G) with respect to #, is invertible and that f# -#o l  is so small that 

I/~-/~0l- IIA-1II ~ 1 for fl large 

The second point is that the Lipschitz constant for t 1 (denoted L in BKL, 
not to be confused with the spacing L of our large-scale lattice) is of order 
e c~. This could cause a problem, since the first inequality of BKL, (4.5), 
which is used in the proof of the invertibility and Lipschitz continuity of t, 
could fail. However, we assume here that fE(#[ G) is independent of G e f#* 
for E large. Looking at the proof of Lemma 3.3, we see that p, to which z is 
proportional, can be made large by choosing E large (more precisely, one 
defines L = (fiEe-~ED) 1/2, note the E, and the same proof gives now p = 
el fiE). Then E can be chosen so large that the first inequality of BKL, (4.5), 
holds. The intuition here is that since [IA-1H is large, one can control only 
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a small neighborhood of #0(') (the first point above). But then one needs 
to know that the true line of coexistence of all the phases corresponding to 
the ground states of if* falls into that neighborhood. This is obtained by 
choosing E large, since the larger the E, the closer one gets to the true 
coexistence line. 

4. EXAMPLES: PROOF OF THE RETOUCH PROPERTY A N D  
PEIERLS C O N D I T I O N  

We now come back to the models considered in Section 1. In all these 
models, whenever ~ is infinite and if* finite, the ground states have layered 
structure, in the sense that the sets A'(G) of Condition (5r of Section 3.3 
consist of a number of planes. 

In one example--the Balanced Model--the proof of the retouch 
property and calculation of the phase diagram are given in detail. Since the 
retouch property of the fcc model is proved in exactly the same way, we 
skip the argument. The low-temperature expansion for the fcc model has 
been treated in a number of works. In Section 4.2 we comment on the 
relation of these earlier calculations to ours. In particular, we show how 
deduce an effective m-potential from calculations involving periodic ground 
states only. Part of the low-temperature phase diagram of the three- 
dimensional ANNNI model is treated in Section 4.3. The retouch property 
of this model is the simplest to prove, since it follows easily from a general 
result on "stacked models" in the next section. Finally, in the last section 
we return to the stacked antiferromagnet of Section 1.4. 

In this section, unlike in the preceding one, by a cube we understand 
an elementary cube of the cubic lattice. 

4.1. The Balanced Model  

Global ground states of the model and part of its phase diagram have 
been discussed in the Introduction. To analyze the local ground states, it is 
useful to consider the potential ~b for the Hamiltonian (0.2) obtained by 
grouping its terms within the plaquattes: Let P = {a, b, c, d} be a plaquette 
of the lattice, b, c, d, a being nearest neighbors of a, b, c, d, respectively; 
then 

~p~- --I(Ga(TbAVGbGc~-" cGd+GdtTa)+ l(1 +[t)(O'aGc+CTbGd) (4.1) 

We have 

�9 p(++)= ~ p ( t - ) =  - l + u ,  ~,,(++ c) = - 1 - ~  

qsp(+ +_) =0, ~ e ( + + ) = 3 + #  

(4.2) 

(4.3) 



134 Bricmont and Slawny 

+-- 

( 

C D 

Fig. 4. Ground-state cubes of the Balanced Model. 

with the obvious notation. Thus, for # = 0  the ground states of the 
Introduction are in the ff(qs) of Section 2.1, and therefore q~ is an m-poten- 
tial. Furthermore, it is easy to see that the only cubes with all plaquettes of 
type (4.2) are those of Fig. 4. This implies that the ground states of the 
Introduction exhaust ff(~).  According to the definition of Section 2.1, a 
configuration G on A is a (local) ground state for p = 0, i.e., an element of 
~A(~), if the(G) = --1 for any plaquette P contained in A. Ground states of 
a cube are pictured in Fig. 4. The full dot stands for plus and the small cir- 
cle for minus. The first of the configurations and the one obtained from it 
by global spin flip appear in the dominant ground states of type C of the 
Introduction; cubes with such configurations are called C-cubes. Cubes 
obtained by rotation of the other cube of Fig. 4 are called D-cubes--they 
appear in the ground states of type D of the Introduction. 

We prove now the retouch property. Consider parallelepipeds formed 
by unions of the cubes of the lattice. By inspection of Fig. 4, one can see 
that ground states of any parallelepiped are such that either (i) each cube 
of the parallelepiped is a C-cube, or (ii) one of the cubes of the 
parallelepiped is not a C-cube, in which case there is a uniquely defined 
coordinate axis such that the intersection with the parallelepiped of each 
plane perpendicular to it consists of cubes of the same kind. The direction 
of this axis--marked by a dash at the center of the cubes of Fig. 4 ~ i s  
called the soft direction of the parallelepiped. 

We note that, obviously, it is enough to prove the retouch property for 
the elementary excitations. Thus, let us fix an energy E and let X be an 
elementary excitation with Ho(X ) < E. We can choose l large enough so 
that each of the components of the support of such an excitation X is 
contained in a parallelepiped which in turn is contained in the interior of 
another parallelepiped contained in dom(X), as in Fig. 5. All the cubes of 
the larger parallelepiped not contained in the smaller one are ground-state 
cubes. 
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Fig. 5. Diagram for the proof of the retouch property of the Balanced Model. 

Consider now a domain A consisting of a parallelepiped A with a 
cut-out smaller parallelepiped (Fig. 5). A is a union of six nonempty over- 
lapping parallelepipeds Ax,+, Ay,+_, Az,+. If in a ground state of A there 
are C-cubes only, then since the parallelepipeds Ai,+ overlap, condition (i) 
implies that the cubes are of the same kind. Hence, obviously, in this case 
one can extend the ground state of A to a ground state o f / ]  in a unique 
way. 

If not all the cubes of A are C-cubes, then one can assume without loss 
of generality that Az,+ contains a D-cube. If z is not the soft direction of 
Az,+, then the proof is trivial. If z is the soft direction of A~,+, then by (ii) 
any plane perpendicular to the z axis which intersects A consists of cubes of 
the same kind. In particular, intersections of Az,+ with Ax, i and Ay, i 
contain only translations of the D-cube above and, again by (ii), inter- 
section of Ax, i and Ay, i with any plane perpendicular to the z axis consists 
of cubes of the same kind, cubes for which z is the soft direction. It is now 
easy to see that the intersection of A with any plane perpendicular to the z 
axis consists of cubes of the same kind and that therefore one can extend 
the configuration to a ground state of A in a unique way. Note that one 
obtains here also a proof of the fact that ground states have unique 
extensions from the boundaries, as required by the retouch property. 

We now turn to a discussion of the excitations and of local 
domination. We proceed as described in Section 2.4. Excitations up to 
order three are pictured in Fig. 6. For  models which are not ferromagnetic, 
like the present model or the models of the next section, a list of excitations 
is usually not accompanied by a proof that it is exhaustive. Instead, one 
computes energies of excitations obtained by flipping a number of spins 
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Fig. 6. 

X31 ~ X32 
Excitations of the Balanced Model, up to third order; E 1 = 12, E2= 16, E 3 = 20. 
Excitations differing by overall spin flip are denoted by the same symbol. 

and hopes that no excitation of low order is missed. Since in the expression 
for the energy of an excitation in terms of the natural potential one has 
both positive and negative terms, cancellations usually make it hard to see 
if flipping more spins does not yield excitations of lower energy. However, 
if an m-potential is used, estimations are very much like in the 
ferromagnetic case, as can be seen in the following sketch of a proof of the 
completeness of the list of Fig. 6. 

Consider the m-potential q~ of (4.1) with /2=0. It is easy to see that 
any excitation has at least 12 excited plaquettes, i.e., plaquettes of type 
(4.3). Therefore, E l = 1 2 ;  and since 20<2E~,  it is enough to consider 
D-connected excitations (in the obvious sense). We assume that it has been 
already checked that X~, X2, X31 are the only excitations of a unit cube 
with energy ~< 20, with the help of a computer, as we did, or otherwise. Let 
X be a qS-connected excitation with support not contained in a unit cube, 
and let 

~ = min  { x l : x e supp(  X )  }, ~ = m a x  { x ~ : x e supp(  X )  } 

We can assume that /3-c~>~2 and that each plane P~= {x: x 1 =7 }  with 
c~ ~< 7 <~/3 intersects supp(X). We note that each such plane contains four or 
more plaquettes intersecting supp(X) at exactly one point. Furthermore, 
there are at least four plaquettes perpendicular to P~ contained in 
{x: x, ~< c~} intersecting supp(X) at exactly one point. And similarly for P~. 
This yields at least 4 .3  + 8 excited plaquettes, and energy >/20. In fact, it is 
easy to see that if P~ contains more than one point of supp(X) for some 7, 
then the number of excited plaquettes is strictly larger than 20. Thus, X32 is 
the only excitation with energy 20. 

We define now an effective potential (2.5) for excitations up to third 
order. For  a local ground state G and a point a of the lattice we set 

f{3~(G, a) = fl ~ { ~ p ( G )  - nt (G,  a ) e - ~ l -  �89 a ) e  -#E2 
P ~ a  

- [�88 a ) +  n32(G, a)]  e -~E3 (4.4) 
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where n~(G, a) (~= l, 2, 31) is the number of excitations to type X~ of the 
ground state G whose support contains a and n32(G, a) is the number of 
excitations of G of type X32 for which a is the middle point of the support of 
the excitation. This can be obtained by choosing the weight function ;g(a, 0) 
tO be standard unless ~9 = 0x32 and z(a, 0x~2)= 1. The function z(a, B) is 
also standard. Since only m.f.'s of excitations are involved here (i.e,, 

= ~gx), ~br(0) = ~b(0) in (4.4). Furthermore, anticipating the final result, we 
set/~ = 0 in the coefficients of e -~E1, e -~E2, and e ~E3. For, it is easy to see 
that in case the perturbation (here �89 Z ...... ac~b) removes the degeneracy 
of the dominant ground states, retaining/~ in the exponents yields a correc- 
tion of order at least 2E1, which is here larger than E3. The n~(G, a) 
depend on the restriction of G to [a, 1 ] = { x :  I x - a l ~ l }  only. This 
dictates lt> 1 in the definition of excitations and the retouch property. 

According to the above description of ground states, the restriction of 
G to [a, 1 ] is obtained from the plus ground state by choosing one of the 
coordinate axes and flipping all spins in a number of planes perpendicular 
to this axis. Obviously, nl(G, a ) =  1 for each G and a. The other n~ are 
expressed conveniently through the structural constants nc and ncc: Let 
nc(G, a) = 0 if there are no neighboring planes of the same sign intersecting 
[a, 1 ], nc(G, a) = 1 if there is one pair of such planes, and let nc(G, a) = 2 
otherwise. Furthermore, let ncc(G, a) = 1 if all the spins of [a, 1 ] are of the 
same sign, and ncc(G,a)=O otherwise. Then n2(G,a )=4+nc(G,a ) ,  
n31(G, a) = 4 + 2nc(a, a), n32(G, a) = 1 + ncc(G, a), and, by (4.2) and (4.3), 
the sum over plaquettes in (4.4) is equal to 

( - 1  + I~) + �89 a ) ( - 1  + p) + �89 - #)[1 - nc(G, a)3 

Thus, 

f(3)(G, a ) = / ~ { - 3 +  [�89 a ) ] # } - e  -~E' - � 8 9  a)]e  -BE2 

- [2 +�89 , a) +ncc(G, a)]e  ~e3 (4.5) 

which for p = 0 yields 

f(z~(G, a) = - 3fl _ e--fiE1-- �89 + nc(G, a)3 e-~E2 

Obviously, f(2)(G, a) is minimal for nc(G, a) = 2, which corresponds to 
all spins within [a, 1 ] being of the same sign. Patching these local ground 
states, we obtain that the C-ground states are strongly dominant in order 2 
(Section 2.4), and that by Theorem A there are exactly two pure phases at 
low temperatures, as described in the Introduction. We now consider # 
small but nonzero. 
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We note that for the C-ground state nc=2 ,  ncc = 1, and for the 
D-ground state nc=ncc=O.  Thus, from f(3)(GC, a)=f{3)(GD, a) one 
obtains 

K~3') D - �89 -#E2+ e-~E3 (4.6) 

where K=  fl/,. The K~;,) D is marked by a dashed line in Fig. 7. 
The behavior of the system in a neighborhood of the line (4.6) is seen 

most clearly if one defines a~(3) by first substituting K=  K~,) D + R and then 
by skipping in (4.5) terms which do not depend on nc and ncc: 

j~3)(G, a )=  nc(G, a )K+ [�89 a ) -  ncc(G, a)] e -~E3 (4.7) 

f and )~ yield the same phase diagrams. Since ncc= 1 for nc =2, and 
ncc=O otherwise, one obtains that G c is dominant for R~<0 and G D for 
R~> 0. According to Theorem B and Remark 4 of Section 2.5, there exists a 
line/~ ~-+ KC'~ defined for/? large enough (marked bold in Fig. 7) such 
that 

KC, D(~) -- K~,)D(B) = O(e-~E4) 

with the property that for K>  Kt3)(fl) one has exactly six pure phases (the 
D-phases), for K<K(3)(/~) one has the two C-phases, and on the line 
K=  Kr one has eight pure phases. 

Remark. Since f(2) is homogeneous in n c, in second order all phases 
coexist on the line K=  KS')D defined by f~2)(G c) =f~2)(GD). Thus, one has 
to go to higher order to see which ground states dominate and to obtain 
the phase diagram. One has a similar situation in other models. 

T I /K= K c'O 

g= 2 . / / ~ j  

c = I , ~K=  K C'D 
(3) 

/ N o ( e - / 3  E4 ) 

g = 6  

c = l  

~K 

Fig. 7. Low-temperature phase diagram of the Balanced Model. 
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4.2. A n t i f e r r o m a g n e t  on Face -Cente red  Cubic  Latt ice 

The ground states of (1.3) have been determined by Danielian3 6) We 
need a refinement of these results--their localized version. 

On an co-cubic of Fig. 8 we connect points of a tetrahedron of the 
lattice. There are four such tetrahedra in each cube, and every pair of 
nearest neighbors is contained in two tetrahedra. We will use the potential 
q5 of the unperturbed system obtained by grouping the terms of (1.3) 
within the tetrahedra: 

1 
~,~=-~ ~ tra~r b (4.8) 

{a,b}cB 

If B is a tetrahedron of the lattice, where the sum is over (unordered) pairs, 
and ~ B = 0  otherwise. This is an m-potential, since r B is minimal for 
configurations of the tetrahedron with two pluses and two minuses, and the 
global configurations described in Section 1.2 are of this type. 

A configuration G on A is in NA(~) if ~B('G) = - 1  for any tetrahedron 
B contained in A. Ground states of a cube are pictured in Fig. 8. The full 
dot stands for plus and the small circle for minus. The soft directions, in 
the sense of the preceding section, are marked by a dash on each of the 
ground-state cubes. The first of the configurations and those obtained from 
it by global flip and rotations appear in the dominant ground states, and 
are said to be of type ft. 

Having the ground-state cubes and their "propagation properties," the 
retouch property is proved here in exactly the same way as in the case of 
the Balanced Model. We now turn to a discussion of the excitations and to 

of 

~. /'/ 
i I \ \~.,~ \ 

O 

of 

/ 

q 

I 
I 
I 
I f 
! o 
I 

J 

o f  

o f  

Y 
Fig. 8. Ground states of an elementary cube of the antiferromagnet (1.3) on the fcc lattice. 
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a proof of the local domination. We first give the usual derivation of the 
perturbation expansion, as encountered in theoretical physics, then pass to 
the localized version which is needed here (see also Chapter III of ref. 32). 
Excitations up to order three are pictured in Fig. 9. 

The usual derivation has two versions, called primitive method and 
cumulant method in ref. 45. The cluster expansion (2.4) can be considered as 
a general version of the cumulant method. We start with the primitive 
method, and then compare it with expansion based on (2.4), which allows 
us, in particular, to comment on its (in)dependence of the choice of the 
constant l which appears in the definition of excitations and the retouch 
property. 

We consider two periodic ground states G' and G", and write Z'  for 
ZR(AIG') and Z" for ZR(AIG"). Obviously, excitations of order 1 yield 
the same contribution to Z '  and Z". The same applies to excitations of 
order 2. Consider now the excitation )(31 (and J(32) of Fig. 9 (C31 of ref. 6), 
in which two noninteracting, i.e., non-n.n., spins of the same sign are 
flipped. In the primitive treatment one would compute the number of 
excitations of this type in a system of N spins, which is (N/2 - 5)N/2, dis- 
regarding a boundary term. The - 5  comes from the fact that once the 
position of one of the flipped spins is fixed, the other spin is not allowed to 
occupy this position and the neighboring sites. When log Z is computed, 
the term quadratic in N cancels out, and on dividing by N one obtains the 
contribution - 5 / 2  to the free energy. Now, in the computation of log Z 
based on the cluster expansion (2.2) and (2.4) the terms quadratic in N 
have been taken care of already while the term - 5 / 2  is obtained from two 
kinds of multiplicity functions. For, depending on the choice of the con- 
stant I of the definition of elementary excitations, a ground state with two 
flipped plus spins can be a single elementary excitation or can consist of 
two elementary excitations. These would yield in log Z terms of the same 
magnitude but of opposite signs. Cancellation between these two kinds of 

Xll ( = 2 t2)  " X21 

u 

X31 (= )(32 ) �9 �9 X3 3 �9 o 

- 

X34 (= X35 ) -. X36 

Fig. 9. Excitations of the model antiferromagnet (1.3) on the fcc lattice, up to third orderl6>; 
E1 = 8J, E 2 = 12J, E 3 = 16J. Excitation of type X34 is marked by f s  on the e-cube of Fig. 8 and 
an excitation of type X36 on the/~-cube. X~,) �9 is obtained from J(• by flipping all the spins. 
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contributions is responsible for the fact that the sum of terms of order 3 
does not depend on the choice of the constant l, and that in fact what 
remains after performing these cancellations is a sum over multiplicity 
functions 0 which are equal to 1 on pairs of excitations of type Xn for 
which the flipped points "interact," i.e., are either nearest neighbors or 
coincide. In this way the term -5 /2  is recovered. Similar considerations 
apply to the excitation )(33 or to any disconnected excitation, like the 
fourth order X42 which is considered further on. 

All this implies that multiplicity functions of type X31 and X33 yield the 
same contributions to log Z' and log Z": each contributing pair of points is 
within a tetrahedron and all the ground-state tetrahedra yield the same 
contributions. 

The domination of the six ground states containing only the /?-cubes 
shows up in the third order, when one considers excitations of type X36: 
The ground state configurations contain c~- and /?-cubes only. By direct 
enumeration one can see that there are as many excitations of type )(34 and 
X35 of an a-cube as there are of a/?-cube. Furthermore, obviously there is 
one excitation of type X36 of an e-cube and there are two of a/7-cube. Since 
no excitation of type ti36 is shared by two cubes, their contribution to 
(log Z ' - l o g  Z") is equal to (number of/?-cubes in G ' - n u m b e r  of fi-cubes 
in G")x e -eE+. Thus, since the /?-ground states have maximal number of 
/?-cubes, their domination is established. 

We will now amplify these considerations by deducing from them the 
effective m-potential and then use the standard perturbative calculations to 
obtain the complete phase diagram. 

The above discussion suggests we define the effective potential as 
follows: the index a in f(3)(G, a) will standard for the center of one of the 
elementary cubes of the fcc lattice. The m.f.'s appearing in jT(3)(G, a) will all 
have supports contained in the corresponding cube, and the weights will be 
standard. Thus, 

1 
ea(a) =-~ 

and 

OB(G) 
B c u n i t  c u b e  c e n t e r e d  a t  a 

)7(3)(G, a) = - [z( ll  )nn(G, a) + Z(12)naE(G, a) ]e -~E~- Z(21)n21(G, a)e ~e2 

+ [Z(31) n31(G, a) + Z(32) n32(G, a) + Z(33) n33(G, a)] e-fiE3 

- [Z(34) n34(G, a) + Z(35) n35(G, a) + Z(36) n36(G, a)] e -~E3 

Since, as follows from the above discussion, all n~(G, a) are G independent, 
apart from /736 , we need to compute only the latter quantity to check for 
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the domination. Now, again from the above discussion, Z34 = 1/3, ~36 ~ "  1 ,  

whereas 

n34(G~)+n35(G~)=n34(G~)Wn35(G~), n36(G ~) = l, n36(G//) = 2 

Thus, G ~ is dominant in third order. We pass now to the perturbation (1.4) 
of the model, with h = 0. Again, considering the perturbed Hamiltonian 
and setting fl3)(G ~, a)=f(3)(G ~, a) one obtains a line a(3)(/3 ) on which in 
the third order the a- and /3-cubes "coexist," and therefore one sees an 
infinite number of phases in this order. Thus, one has to consider 
excitations of the next order to find the low-temperature phases in a 
neighborhood of this line (Fig. 10). Instead of working out the effective 
potential ab initio, we will show how to use standard perturbative 
calculations involving periodic ground states only, to deduce the existence 
of an effective m-potential, and hence to obtain a proof of local 
domination. We reformulate first somewhat the calculations of ref. 23. 

Let G be a periodic ground state of the system. One can assume 
without a loss of generality that the soft direction of G is x. A plane is a 
plane which is perpendicular to the x axis and which is passing through 
points of ~_. Following ref. 23, a plane P will be called a ~-plane (resp. an 
a-plane) if all the cubes of the lattice with centers in P are/3-cubes (resp. 
a-cubes). According to the description of ground states given in Section 1.2, 
each plane is either an a-plane or a/3-plane. Let n~ and n~ be the density of 
a- and/3-planes, respectively. That is, if N is a multiple of the period of G 
and one has a sequence of N consecutive planes, then 

n~(G) = (number of planes of type/3 in the sequence )/N 

Similarly, let npa(G) be  the density of pairs of consecutive /3-pianes in G 
and let the structural constants n~, n~, and n~  (in the sense of ref. 12) be 

X41 ~ 

X43 

X45 

X 47 

X X 41 ~ 45 ' 

X42 ~ �9 

244 

X4S 

X48 

X45 , X46 , X47 

Fig. 10. Fourth-order excitations of the model (1.3); E 4 = 20J. 
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defined analogously. According to ref. 23, one has the low-temperature 
expansion 

-f(e4)(G) = 2fl - [ 1 + 2na(G)] K + x 2 + 4x 3 + [ ~  + na(G)] x 4 

+ [64 + 8n~(G) + 2np~(G)]x 5 (4.9) 

Here K = f l a  (=K2  of ref. 23), and we set x = e  -4~, SO that e - ~ e i = x  i+~ for 
i~> 1, as in ref. 23. We also set K =  0 in the coefficients of x ~ in anticipation 
of the fact that K =  O(x 4) in the region of interest here. Skipping in (4.9) 
the G-independent terms, we consider the )~(G) defined by 

- ~ (  G) = -2n~( G) K + n~( G)x  4 + [8n~(G) + 2n~(G)]  x 5 

Setting K =  0, as before, one can see that minimal free energy is obtained 
when n~ is minimal, i.e., for the fl-ground states, and that these ground 
states should dominate in order 3. Also, the same ground states dominate 
for K < 0 .  For  K >  0, fl-ground states dominate in the same order untill 

K = K~) / /~  �89 4 (4.10) 

On the curve (4.10) in order 3 all ground states will appear, since the coef- 
ficient of n~ is zero. Thus, to investigate domination in a neighborhood of 
(4.10), one has to pass to the next order. Setting f ( G ~ ) = f ( G B ) ,  one 
obtains 

I~ = x~J) - �89 4 + 5 x  5 

Thus, on the curve K =  K~) ~ 

j~(a ~) = 2 [ n ~ ( G ) -  n ~ ( a ) ]  x 5 = 2n~(G)X 5 

which is zero for G = G ~ or G = G p, and is strictly positive otherwise. This 
completes the argument. (A mistake in the coefficient of x 6 in ref. 23, which 
is of no relevance here, is corrected in ref. 33.) 

To obtain from these calculations an effective m-potential, we proceed 
as follows. We write f(4) instead of f(E4). We consider a translation- 
invariant family Ma, a e ~_, of subsets of the lattice with the property that if 
f(a)(G, a) are defined by standard weights X [with respect to the family 
(M~)], then f(n)(G, a) is equal to f(4)(G) for a global extension G of G. This 
will imply that on the curve (4) the a- and fl-ground states are dominant 
and that f(4)(G, a) is an effective m-potential. 

Since the figures M ,  may be hard to visualize, we give their coodinate 
description. First, we realize the fcc lattice ~ as 

822/54/1-2-10 
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For each lattice point a, let Ca be the following face-centered cube with a 
corner at a: 

i ~ :  i Ca = {x e 1_: x , / a ,  i = 1, 2, 3, and max tx ~ - aq ~< 1 } 
i 

Furthermore, let f l = ( 0 ,  i 1 , ~,~), f 2 = ( > 0 , � 8 9  f3=( �89  0); so that 
{0, f l ;  f2, f3} is a tetrahedron B of (4.7). We define an M-figure as a set of 
the form 

M= = C~vo (Ca +f~)  vo (Co +f2 )  u (C a + f3 )  (4.11) 

for some a e 1_; here C a + x is a translation of the cube C~ by a vector x. Ma 
consists of the points of the lattice which have all the coordinates larger 
than that of a and which are nearest neighbors of points of Ca. The 
definition (4.11) better exhibits the symmetries of M~, which are needed 
below, than the verbal one. 

Now, by inspection, it is clear that each excitation of Figs. 9 and 10 is 
contained in an M-figure. Furthermore, it follows from the description of 
local ground states that if G is a ground state in a cubic neighborhood of 
Ma, then we can classify Ma as being either of type ee, aft, fie, or tiff, in 
direction of increasing "soft coordinates" (in the obvious sense). Let now 
f(4)(G, a) be defined by the standard weights z(a,.) with respect to Ma. 
Then f(4)(G, a) depends only on the restriction of G to M a. Therefore, it is 
equal to f(4)(G, a), where G is an extension of the restriction of G to  Ma 
which is periodic in the soft direction of G, and which is defined as follows: 
If Ma is of type ee or tiff for G, then 61 is defined as G = or G ~ respectively. 
If M= is of type/~e, then G is defined as the G r = ...c~fiefi... ground state; it 
is not hard to see that this can be done. Similarly for the eft case. 

We note now that f(4)(G, a) is the same in the e/? and fie cases (it is 
here that we had to choose the shape of M~ with some care). Since all the 
M-figures of G~e are either of type eft or fie, we see that f(4)(G, a)= 
f{4)(G ~) whenever the restriction of a local ground state to M~ is of type ~fl 
or fie. And obviously, when this restriction is of type e or fl, then f(4)(G, a) 
is equal to f~4)(G =) or f~4)(G~), respectively. Since on the line (4) 

f(4)(G ~) = f(4)(G ~) > Ji4)(G =~) 

one obtains that f(4)(G, a) is an effective m-potential and that the e- and 
B-ground states are dominant there. Moreover, the same argument shows 
that the fl-ground states are dominant for K < K~i) ~ and the a-ground states 
for K > K~i)e. Theorem B, together with Remark 4, implies now that there is 
a curve K~.~(fl) defined for large enough fl, such that 

K='e(fl) - K~g  = o(e ~4) 
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with the property that for K >  K~'B(/~) there are exactly 12 pure phases, for 
K <  K~'~(/~) there are 6, and for K =  K~'~(fl) there are 18. 

Similar calculations yield the same phase diagram in the neighborhood 
of the (open) interval OE of Fig. 5 of ref. 32. In fact, using the patching of 
the Remark 4 of Section 2.5, one obtains low-temperature phases for all 
points left to the segments AB and BE of Fig. 5 of ref. 32. One can analyze 
similarly the segment ED of that figure, apart from the fact here that one 
has three types of ground-state cubes, two different types appearing in 
the same global ground states. The low-temperature properties of the 
remaining part of Fig. 5 of ref. 32 have not been analyzed. 

4.3. The A N N N I  M o d e l  

That the model has the retouch property follows from the general 
arguments of the next section. We start the analysis of the model with a 
determination of the ground states--a computation which is a localized 
version of that of ref. 12. We keep the notation as close as possible to that 
of ref. 12. 

A natural potential for (1.5) is a sum the usual n.n. potential for the 
first sum in (1.4) and the potential containing the terms of (1.5) within 
vertical three-point sets: 

(1D{a 27 . . . .  + 5 }  = (pve r  = - - I J l ( S a - ~ S a + S a S a + ~ ) - - J 2 S a _ ~ S a + ~  

where ~ is the unit vector in the vertical direction. In the obvious notation, 
we have 

~ v e r (  _.1_ q_ -Jr'- ) = - - J 1  - -  J 2 ,  ( / )ver (  _]_ q._ __ ) = 2 2  , ( p v e r (  _1.. __ _1.. ) = J 1  - -  J 2  

q5 ver will be identified with the corresponding potential of the one-dimen- 
sional system, which results in the notation that follows. Hence, 
qSver( + + + ) = --J1 + giver( + __ + ), and OSier( + + + ) = ~ver( + + __ ) yields 

J1 = -2J2.  The case of J~ < 0 is obtained from that of J1 > 0 by flipping 
every second spin, i.e., spins in every second horizontal plane of the three- 
dimensional model. Therefore we will consider only the case of J1 > 0 (for 
J l  = 0 one has two decoupled Ising models). Taking the symmetries of ~v~ 
into account and setting x = -Jz/J1, one obtains that ~b~ er is minimized by 
( + + + )  and ( - - - )  for ~c<�89 by ( + + - ) ,  ( - + + ) ,  ( - - + ) ,  and 
( + - - )  for ~c > �89 and by all these six configurations for K = �89 Patching 
this together, one obtains in particular the configurations of Fig. 11. 

This yields two global ground states of fq(qs) for tc < �89 and four for 
~c> 1. For ~c=�89 the number of ground states is infinite: the above 
calculations show that for rc = �89 any configuration which does not contain a 
( + -  + ) or ( - + -  ) interval, i.e., which does not contain separated plus 
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or minus spins, is a ground state (see Section 1.4). In the following, 
= ~--�89 and we consider 6 close to 0. In most of the formulas we set 

J1 ~ l .  

Following ref. 12, we consider now excitations obtained by flipping 
one spin. Vertical sections of five of them are pictured in Fig. 1t (horizon- 
tally instead of vertically); the others are obtained from these by applying 
symmetries of the interaction. The spin to be flipped is indicated by a caret; 
the labels o-r are as in ref. 12; (E~) indicates the order of the excitation, for 
Jo large enough (note that, unlike here, in ref. 12 the order of an excitation 
is the number of the spins flipped); f o ,  ..... f~are the corresponding one-point 
contributions to the free energy. Namely, defining 

1 1 
ea(a) =Sho~ 2 q~8(a) + ~  2 qsB(a) 

B,a ~ B ver B, a ~ B 

and 

f(flipped spin at ~(G, a) = f l e G ( a  ) - e -/~H(mpoG L c~t 

one obtains, for example, 

f o  = fl( - 2 J o  + fi - �89 - exp -- 4//(2J 0 + �89 - 6 )  "" f13 - z x  I 2~ 

where -~ means that we dropped the summand - /? (2J  o -  �89 common to all 
f o , . . . , f ~ ,  and where z = e x p ( - 8 / U 0 )  ( = w  q* of ref. 12, with q z = 4 )  and 
x = exp( - 2/3J0. In the last column of Fig. 11 we give these free energies on 
the line 6 = 6~i3, 

~6~i~= - l z  + ~ zx 

of coexistence of the (oo> and (3> phases (second-order perturbation 
expansion). ~(2) is obtained by setting equal the perturbative free energies 

1 2 = f o  f 1 6 _ z x l . 2 6  f ~ 2 ) ( ( 3 > ) = ~ ( 2 f ~ + f P )  ~ - - ~ f l 6 - ~ z ,  f ~ 2 ) ( ( o o > )  ~- 

(4.12) 

( e - - ~ & = z x  k - l ,  k =  1,2, 3,4). 

o: + + ~ - + +  E2  f o ~ f l h _ z x  I 2 6 ~ 0  

~z: + + ~ - + -  E3 f ~ - � 8 9  2 " ~ z x  

p: - - + Z - q - - -  E 4 f P ~ j ~ - - z x 3 + 2 6 ~ z x  

o: + + $ - -  F.1 f ~ - - l ~ a - z ~ - k z x  

z: - + 2r- - - E2 f ~  ~- - f l6 - z x l  + Za ~ z 

Fig. t l .  One-spin flips of the ANNNI model. 
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For each ground state G and a lattice point a we define now a second- 
order effective potential f(2)(G, a) as the contribution to the free energy 
coming from flipping spins at a -  2, a, and a + ~: 

f(2)(G, a) = �89 e) + f~(a) + f~(a+ e)) (mode -'~E3) 

where :~(a)=o ..... ~. Thus, fl2)((oo>, a ) = f  ~ f(2)((3),  a)= �89  
whereas, e.g., for f(2l(<4>,a) one obtains alternatively two times 

~( . . . .  3 and continuing �89176 + f  ~) and two times ~ f + 2 f  ). Setting here 6=6(2 ) 
these straightforward calculations, one obtains that f(z)(<oo ), a) ---- 
f(2)(<3>, a), and that if the restriction of a ground state G to the vertical 
interval of length 7 centered at a is not of class < oo > or (3 >, then 

f(2)(G, a ) - f ( 2 ) ( ( o e  ), a ) )  ~zx 

This implies that the six ground states of the class <o�9 and ( 3 )  are 
locally dominant in the sense of Section2.4 (in second order) in a 
neighborhood of the line 6 -6(2 ) -  ~.3. According to Theorem B and Remark 4 
to that theorem, it follows that there exists a function/~ ~ 6~'3(/?) defined 
for fl large enough such that (1) 6c;v'3--6(~j 3 is of order zx  2 ( = e  -fiE3) or 
higher; (2) on di ~'3 there are exactly eight pure phases, of classes <oo > and 
(3>; (3) there exists a constant c > 0  such that for 0 < 6 - 6 ~ ' 3 < c z x  
(=ce  ~e~) there are exactly six pure phases (of class <3>) and for 
0 < 6 ~' 3 _ 6 < czx there are two pure phases (of class < oe )). 

The same calculations imply that between the lines 6--6(2)~.3 and 
3,2 6 = 6(2), 

3~ B6d~ = z -  3 z x  

the ( 3 ) ground states dominate in first order. Thus, for any 0 < a < 1 there 
exists/~o such that for/~ >/3o and 

6~176 < 6 <~ z(p) 

the only pure phases are those of class (3 ) .  [Extending these calculations 
to second order, we would obtain 6 < }(z - azx), where a > 3]. 

We could proceed in a similar manner to treat the ( 3 ) - ( 2 3 )  
coexistence line of ref. 12. We do not do this, however, since the entire 
phase diagram has already been treated rigorously in refs. 8-10 and 25. 
Moreover, using an abstract argument, one can in fact deduce the existence 
of an effective m-potential (2.5) from a somewhat strengthened version of 
"periodic calculations" of ref. 12 and thus confirm their results. The 
argument is similiar to that used in the fcc case to obtain the c~-/~ 
coexistence line from the calculations of ref. 23. However, it is more 
involved, since here the ground states have more complicated symmetry 
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properties. One has to take into account that in "periodic calculations" 
many relations between the structural constants of ref. 12 are used, 
relations which are not satisfied by local ground states in general. 

4.4. Stacked Models 

Stacking yields three-dimensional models from two-dimensional ones, 
or, more generally, (d+l) -d imensional  from d-dimensional ones. The 
intraplane part of the interaction of the stacked model in, say, horizontal 
planes is equal to that of the two-dimensional model, while the interplane 
part favors the same configuration of vertical neighbors. Thus, the ground 
states of a stacked model are obtained by repeating the same ground state 
of the two-dimensional model in each horizontal plane. Of course, one can 
also stack twice, starting from a one-dimensional model as in the case of 
the ANNNI model. 

More precisely, stacking is defined as follows. Let ~ '  be a potential on 
a d-dimensional lattice U. Then its (once) stacked version ~b (with 
parameter J) is the potential on the lattice ]_ = ~ • 7/ which is invariant 
under translations by the unit vector e in the z direction and such that for 
M c  D_'x {0} - 0_', q~M(X)= q ~ ( X )  and for M =  {a, a+e} 

g,M(x) = -Y~(Xo, xo+e), J> o 

One has the following: 

Suppose that the ground states of a two-dimensional system with the 
Hamiltonian H '  extend uniquely from the boundaries. Then H has the 
retouch property and Condition (5r is satisfied. 

We skip the proof, which is obvious. 

4.5. The Stacked Antiferromagnet 

The Hamiltonian (1.7) can be rewritten as ZP ~e ,  where the sum is 
over all the plaquettes of the lattice y2 and 

1 l 

n.n .a ,  b E P  n . n . n . a , b ~ P  a E P  

Because of the flip symmetry, it is enough to consider h >~ 0. Minimizing 
�9 e, one obtains Fig. 1, where in each region we indicate the (con- 
figurations of the) plaquette P with minimal ~e .  We now restrict our 
attention to the strip p l with base BC. 



L o w  T e m p e r a t u r e  P h a s e  T r a n s i t i o n  1 4 9  

One can see by inspection that if each plaquette of a 4 x 4 square of 
the lattice is of type pl  (i.e., a rotation of the plaquette pl  of Fig. 1), then 
the configuration of the square is either of type c~ or of type /? (Fig. 12); 
here by configuration of type e we understand a configuration obtained 
from that of Fig. 12 by a translation, rotation, or reflection. 

Moreover, again by inspection, one can see that for the configuration 
the vertical direction is soft while the horizontal is not; i.e., extension of 

the configuration to a ground state of a rectangle of height 4 is determined 
uniquely and it consists of plaquettes of the same type. For  the/3-plaquettes 
both the vertical and horizontal directions are soft. One can repeat now the 
reasoning applied to the Balanced Model in Section 4.1 and obtain both 
the structure of ground states, as described in Section 1.4, and the 
uniqueness of extensions of ground states from the boundaries, which by 
the preceding section implies the retouch property of the model (1.6). We 
proceed now to a description of low-energy excitations and a determination 
of the dominant ground states. 

We call a (configuration X of a) plaquette P excited if ~e(X) is larger 
than for a ground-state plaquette, and we call it second best if there is no 
excited plaquette with a smaller g,p. A calculation yields that in the interior 
of the strip marked p0 on Fig. 1, the plaquette pO is second best. P2 n and 

2 2 pO Pnnn have similar properties, with P2 n and Pnn, replacing On the 
dashed lines the second best plaquettes are those of the bordering regions, 
while at the point A all three types of plaquettes are second best. 

Now, it is easy to see that any excitation has at least four excited 
plaquettes. Therefore, for J > 0  lowest order excitations are obtained by 

2 flipping one spin, and the parts P2nn and Pnnn of Fig. 12 show that in the 
2 regions P2nn and Pnnn of Fig. 1 the four equivalent ground states containing 

@ | @ @ I @ | | @ @ @ @ @ �9 @ @ 

o ( ~  o �9 o ~ o �9 o e o �9 o e o �9 
�9 �9 ( ~  �9 IPn2n �9 �9 �9 �9 �9 ( $ ) � 9  �9 I P 2  

nnn �9 I �9 �9 

o . 0 �9 . o @ 0 o �9 o �9 �9 o �9 o 

p ~ p 

�9 �9 �9 �9 �9 �9 �9 �9 

@ �9 �9 �9 �9 �9 

�9 0 �9 0 

Fig. 12. Ground states of the 4 x 4 squares of the stacked antiferromagnet (1.6) in the strip 
p l. (O) plus spins; (O) minus spins. Excitations yielding domination are obtained by flipping 
the circled spins. 
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only the e-squares are dominant. For, consider first the (open) strip P 2  n .  

Here there are two ways of flipping an interior spin of an e-square which 
yield four P~n plaquettes, whereas there is only one such way for the 
r-square. It is easy to obtain from this an effective potential showing local 
domination of the e-ground states, as in the preceding sections. Similar 

2 considerations yield one way of producing four Pnnn plaquettes for an 
e-square and none for the r-square, which shows that again the four 
e-ground states are dominant in order 1. 

In the region p0 the situation is more complicated, since there is one 
excitation of first order both for the e- and fi-squares. For J > 0 ,  in the 

2 interior of p0 but close to its border with the P2nn and P . . . .  the second- 
order excitations are obtained by those flippings which produce four Pen or 

2 P~,, plaquettes, respectively. Thus, in this boundary region the c~-ground 
states are dominant in second order. If J is small enough, then close to the 
boundary of p0 second-order excitations are obtained by flipping three 
horizontal or vertical spins, as indicated in Fig. 12. Then again the 
e-ground states are dominant in order 2. And again it is easy to write down 
an effective m-potential demonstrating local domination here, We skip this. 

This ends the proof of the fact that the four equivalent ground states 
of ~* of Section 1.4 are dominant for (e, h) in the stri p p0, and that 
therefore by Theorem A the system has there exactly four pure phases at 
low temperatures. 

5. C O N C L U D I N G  R E M A R K S  

We discuss now several classes of models with an infinite number of 
periodic ground states, most of which cannot be treated with the methods 
of this paper, and some of which constitute interesting open problems. 

(a) Models of interfaces. An infinite set of ground states may also 
occur in systems with an infinite spin space, e.g., various SOS models of 
interfaces, and interacting surfaces. These systems may have quite a rich 
phase diagram, such as wetting and layering transitions, which can be 
analyzed with an extension of Pirogov-Sinai theory related to the one 
developed here/2) (see also ref. 1 for a different approach to these models). 

(b) Ferromagnetic models. Here the Hamiltonian has a large group 
of symmetries, which acts transitively on the set of ground states. Using 
these symmetries, a complete analysis of the low-temperature phase 
diagram is possible, irrespective of the ground-state degeneracy. 12~ 

(c) Models with nonzero ground-state entropy. The first problem is to 
understand what happens at zero temperature, where the set of ground 
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states forms an ordinary statistical mechanical system in itself. If this is 
done, then in some cases, the method developed here may be used, in 
combination with those of ref. 11, to give some information on the low- 
temperature phase diagram (see ref. 4 for an elaboration on this point). 
Recently a special situation has been treated in ref. 42. 

(d) Regularity. There seems to exist a relation between the degree of 
ground-state degeneracy of a model and its regularity. Indeed, consider a 
three-dimensional model and let us count the number of ground-state 
configurations in a cube of side L. In all the regular models that we have 
encountered, we found that this number grows like c L. It may grow like 
c L2, as in the staked antiferromagnet, (5) but this model is not regular, 
while having zero ground-state entropy (nonzero ground-state entropy 
corresponds to a growth rate of cL3). On the other hand, in two dimensions 
the only regular models that we have found are those with a finite number 
of ground states. Models with a number of ground states growing like c L 
have zero ground-state entropy, but are not regular. 

(e) Nonregular models with zero ground-state entropy. This is 
probably the most interesting class of open problems for which progress 
seems to be possible. It includes the two-dimensional Balanced, ANNNI, 
and antiferromagnet (1.6) models, the Heilmann-Lieb models of liquid 
crystals, (19) the Domino model, (35) the stacked antiferromagnet of ref. 5, or 
Pecherski's model (32) (a model with a finite set of periodic ground states 
which does not satisfy the Peierls condition). All these models have zero 
ground-state entropy. There does not exist a general method, even at a 
formal level, to analyze these diagrams, although several examples have 
been studied (two-dimensional ANNNI model, (13'361 domino model, (t9'34'35) 
and partially understood. 

(f) Existence and estimates of the surface tension. In many models, 
phase transitions may be discussed equivalently in terms of coexistence of 
phases or in terms of surface tension (see, e.g., ref. 21). As pointed out by 
Binder (private communication via Joel Lebowitz), the surface tension 
behaves quite differently in systems with a finite and with an infinite num- 
ber of ground states. In the latter case the surface tension may go exponen- 
tially to zero as/~ tends to infinity, while it approaches a nonzero value in 
the same limit in the Ising model and in all the models covered by the PS 
theory. ~4~ This is easy to understand: when there is an infinite number of 
ground states, it may happen that an interface between two phases does 
not cost any energy, but costs only a free energy of low-energy excitations. 
This is indeed the basic mechanism studied in this paper. The surface 
tension measures the cost, in free energy, of an interface between two 
phases. Since the free energy of these low-energy excitations is exponen- 



152 Br i cmont  and Slawny 

tially small at low temperatures, so is the surface tension. We give now a 
more precise formulation of the result. 

A standard definition of the surface tension is a follows. Let A = AL, M 
be a rectangular box of size M x L a- ~ and let Z(A I G, G') be the partition 
function with boundary conditions G on the upper half of A and G' on the 
bottom half. Then the surface tension between the G and G' phases is 

= l i m  ZL, M 
L , M ~  

where 

Z(AIG. G') 
--ZL, M = L  -(a 1)log [Z(AIG)Z(AtG, ) ] I /2  

(assuming the limits exist). Now, following the proof of the Peierls bound 
(3.8), one can derive the lower bound 

.EL, M>/e  O(B) 

uniformly in L and M. 

APPENDIX: PROOF OF UNIQUENESS 

We prove here the uniqueness part of Theorems A and B (see the 
beginning of Section 3.5). We consider the framework of Theorem B. Thus, 
for each ground state G of ~q* we have a r-functional F G and a parameter 
bo satisfying (3.35). Let 

= = { c  e = 0 }  

The ground states in N** will be called stable and the remaining ground 
states of ~* will be called unstable. We use the same terminology for the 
corresponding restricted ensembles. We shall prove that the only pure 
phases are small perturbations of the stable ground states, as in the 
Pirogov-Sinai theory/29'3~ We explain first the main ideas of the proof. 

By (3.35a), for any boundary conditions Y in the restricted ensemble 
of G, the partition function Z~ Y) is equal to that of a contour model 
with parameter ba. Equation (3.29) implies that large contours are favored 
in an ensemble defined by a contour model with a nonzero parameter. This 
expresses the intuitive notion that if one puts boundary conditions belong- 
ing to an unstable ground state on a large enough box, then a large con- 
tour enclosing most of the box and whose interior boundary belongs to a 
stable ground state will appear. However, it is not obvious how to turn this 
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idea into a proof. Part of the difficulty is that bG may be arbitrarily small. 
However, by going to a large enough scale, one should be able to see that 
the unstable ground states are suppressed. Our main idea is to define new 
"large-scale" contours which will be regions of the lattice where the con- 
figuration either contains large contours (of the type defined in Section 3.1) 
or belongs to an unstable restricted ensemble. The "large scale" will depend 
on the size of the boxes A along which the thermodynamic limit is taken. 
Thus, the size of these boxes will play a role similar to the one played by/3 
in Section 3 I-compare (A.16) with (2.9)]. This will allow us to prove that 
under any boundary conditions, the total fraction of the volume of A where 
the configuration coincides with an unstable restricted ensemble is 
negligible when A --* oo. This and standard arguments (15'4) will imply that 
all extremal periodic Gibbs states are small perturbations of stable ground 
states. 

To fix the notation, let d =  3 and let A be a large box centered at the 
origin, with IA] = (NL) 3, where L is fixed as in Section 3.1, and N goes to 
infinity with A. We cover A with large cubes (called N-cubes), 

N1/2 L 
B , = B o + - - - j - - a ,  a ~ 2  3, where ]Bol = L 3 N  3/2 

Observe that the size of B o depends on A (IBol-~ IAtl/2), and that the 
number of N-cubes in A is of order N 3/2. 

A contour (as defined in Section 3.1) is small if [FIL<~N, and large 
otherwise. 

We remark that the probability in a contour model with z large of 
having at least one large contour in A is very small, i.e., of order 

I A[ (ce ~)N ~ e ~u/2 (A.1) 

for N large [since [A] =(LN)3] .  This follows immediately from the 
definition (3.23) of a r-functional. Now we define our new "contours," 
N-contours, as unions of N-cubes: An N-cube B is regular for a given 
configuration if: 

1. All contours intersecting B are small, and 

2. In the components of the complement of the contours in B [i.e., in 
B \ U r ~ z  0(F)],  the configuration belongs to a stable restricted 
ensemble. Thus, we have again two types of irregular cubes, those 
of type I (with an unstable restricted ensemble) and those of 
type II (with a large contour). 

Let Q be the union of all irregular N-cubes. This is not necessarily a 
connected set, since we do not perform here the decomposition into 
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connected components, contrary to the case of usual contours. Our main 
estimate follows: 

There exists c > 0 such that for all N large enough, 

PA(Qt Y ) ~ e  (,NOQIN forall  YeW 6,e and G6~q** (A.2) 

where ]QLN is the number of N-cubes in Q, 

PA(QI Y) = Z(A, Q IY ) /Z (AIY)  (A.3) 

is the probability of Q in the Gibbs state in A with boundary conditions u 
and Z(-I  Y) is as at the beginning of Section 3.2. 

(Note that IQI~L3N3/ZIQIN. ) (A.2) implies that for any boundary 
condition J(, 

P A(Q I X) <~ exp[c'fl(LN) z - eNI Qi N] (a.4) 

because P is a ratio of partition functions, and changing boundary con- 
ditions affects partition functions at most by a factor of exp[O(fl)(LN)2]. 
[-The Z(.  J Y) at the beginning of Section 3.2 is defined for boundary 
conditions in a restricted ensemble, and so is P in (A.3). In the general case 
of (A.4), P is defined in the standard way.] 

Using (A.4), we may bound, for any boundary condition ii, 

P A(IQIN ) N5/41 x )  

<<, exp[O(N 3/2) + O(fl)(LN) 2 - cN. N s/4 ] <~ expr - 0(N9/4)] (A.5) 

since there a r e  e ~ possible families Q of N-cubes in A. The condition 
(A.5) tends to zero as N ~  o0. So, we may as well condition onto the event 
that IQIN<~N 5/4. But then [QI has a bound of order (Lx/-N)3N 5/4= 
L3N 11/4, which is much smaller than IAI = L~N 3. Therefore IA\Q[/IAI ~ 1 
as A tends to infinity and all but a negligible part of A is made of regions 
where the configuration consists of a stable restricted ensemble with small 
contours. Moreover, as we discuss below, there exists a convergent 
expansion in those regions. These facts and standard arguments, (15'4) will 
conclude our proof. 

In order to prove (A.2), we introduce the small contour partition 
function: 

ZO(A I y) = ~s  e ~mX)/ZL,(AI Y) (A.6) 
x 

where y ~ . G . e  for some G ~ *  and the sum extends over those 
configurations defining Z ( A I Y )  which have small contours only. 
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Using (3.9) and (3.35a), we have 

Z~ Y ) = ~  seb~v(~)-wA(~lY) 17 Z(r;F) (A.7) 
oo F ~ o)  

where the sum runs over families of small exterior contours (note that all 
contours are small if the exterior contours are small), bc = 0 for G~ N**, 
and one has a convergent cluster expansion in the contour model, as 
discussed in Section 3.4. Thus, one has a formula analogous to (2.2): 

log Z~ Y) = ~ ~br(0, A, Y) (A.8) 
a 

if Y s J f  ~ Here the O's are m.f. on the polymers of the contour model, 
with only small contours present. Moreover, 

log Z~ I Y)= s(ra)tA] + O(e-~)IOArL (A.9) 

This is similar to (3.26), and follows from the fact that the restriction to 
small contours produces only a negligible error [see (A.1)] for A large. 

The proof of (A.2) is similar to that of (3.10). The role of the 
fundamental estimation (2.9) is played here by the following. 

L e m m a .  There exists c > 0 such that if bc # 0, for any large enough 
N and any subset A' of A with IA'[ ~> N, 

Z~ ' ] Y) <.% exp([s(F o) + ba ] I / ' l  - c N  1/2 ] A '  I L -t- { exp [ -- O(/3)] } I OA'I c) 

(A.10) 

Now, using the lemma, we finish the proof of (A.2). Comparing the 
numerator and denominator in (A.3), one obtains a bound with a factor 
e -~ for each large contour and, using the lemma, a factor 

exp( - c N  1/2 [BilL) = exp ( - c 'N)  

for each irregular N-cube of type I. 
More precisely, we shall show that there exists c > 0 such that 

.< t 
PA(QI Y) ~ ~ H exp( - OA(FI Y) + {exp[-- O(/~)] }IFI L -- cN]71(CO)[ ~) 

O) F E r ~  

(A.11) 

where the sum is over families co of large contours with support contained 
in Q. To define A(co), let 

A\supp(co)= U A6(co) 
G e ~ *  
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be the decomposition of the complement of the support of ~o into connec- 
ted regions having as boundary conditions a configuration of U c ~ *  fG, E 
Then 

.~(oJ)= ~) At(o)) 
G(;~** 

is the union of the regions having unstable boundary conditions. Then, 
using (A.11) instead of (3.13), we can derive (A.2) by arguments similar to 
the proof of (3.10) [using now (3.10) and (A.1) to control the sum over the 
large contours]. 

To prove (A.11), we write in (A.3) 

Z(A, Q[ Y ) = ~ '  1~ e-~H(r) ~I Z~176 YG) ZE(AG(e))[ Y~) (A.!2) 
co f ~ c o  G ~ a J  * 

where the sum is over large contours in Q and Yc e y-c,E are the boundary 
conditions on AG(~o) determined by the contours in oJ. Of course, Yc 
coincides with the Y of (A.3) in the complement of A. [(A.12) follows from 
the definition (A.6) of the small contour partition function.] By restricting 
the summation in the denominator Z(AJY) of P to configurations with 
small contours only, we bound it from below by 

Z~ Y) ZE(AJ Y) (A.13) 

We estimate now the small-contour partition functions. In (A.12), we use 
the expansion (A.8), (A.9) for the stable G's and we use it also in (A.13) 
(where G is stable by assumption). For G r (4"* in (A.12) we use the upper 
bound (A.10). Now comparing the numerator and denominator, (A.12) 
and (A.13), we observe that we get from (A.9) and (A.10) a term 

exp {~  [S(FG)+bG--S(FG(r))][AG(o))t--cN-'/2[~I(co)[L} (A.14) 

in the numerator plus boundary terms. Those coming from the boundary 
of A cancel between the numerator and the denominator of (A.3) because 
we have the same boundary conditions there, or contribute to the 
e ~ term in (A.11), like the other boundary terms [see (A.9)]. Now 
we use (3.35b), which we write as 

s(F6) + bG -- s(FG(y)) = fE(G) -- fE(G( Y)) 
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(since bG(y)=0), and insert this in (A.14). Going back to (A.12), we have 

PA(q[Y)<<-ZE(A] Y) , ~/ 1-I e x p ( - f l H ( P ) + { e x p [ - O ( f i ) ] } ] F ] L )  

• 

G e ~ *  

) 
Ef t (G)  -re(G( Y))] IAG(co)I -- cN 1/2 I/7((o)1~ 

(A.15) 

Now, using the convergent expansion of the restricted partition function, 
we see that 

- f l  ~ H(F)+ ~ {logZE(Ao(~o)]YG)+ [fE(G)--fE(G(Y))]]AG(~O)]] 
l ~ o J  G ~ *  

- log ZE(A] Y) 

-  .(rl Y)+e-~ (A.16) 
F E ~  

To prove (A.16), go back to the definition (3.5) of ~A(FI Y), which now 
can be rewritten as 

~A(FI Y)=fiH(F)- ~ {logZE(AG(F)]F, Y) 
G ~ *  

+ [fE(G) --fE(G( Y))] 4A~(F)I } + log ZE(A] Y) 

where Ac(P ) = A6(oo ) for co = {P}, and in the second term on the rhs we 
have boundary conditions determined by P and Y. Then we see that the 
difference between the lhs of (A.16) and the first term on its rhs is similar to 
UA(O) IY ) in (3.3) and, using the expansion in the restricted ensembles, can 
be bounded by e ~ i.e., the second term in the rhs of (A.16). 
Inserting (A.16) into (A.15) proves (A.11). Using (A.11) and fact that 
[A((-O)]L~N3/2171((.O)[N, w e  finish the proof of (A.2), It remains to prove 
the lemma. 

Proof of Lemraa. Using (3.7) and (3.35a), we have 

ZO(A,[ y)= ~ s  ebb(o,)- wA(o,I v) ]7I Z(F; F) (A.17) 
o2 F ~ ( o  

where F =  Fo(v) and the sum runs over families of small exterior contours. 
Let us split this sum into ~]~ + ~ ,  where the first sum runs over ~o such 
that v(~)<~[A'[/2 and the second over co with v(~o)>[A'J/2. We shall 
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bound each sum by the rhs of (A.10). Then 
possibly a smaller c. The first sum is easy: 

b 
bv (~ )  <~ b IA' I  - -~ IA'I and 

for N large enough. Now the upper bound 

~s {exp[- WA(col Y)] } ~I Z(F; F) 
co F ~ c o  

Bricmont and Siawny 

the lemma follows with 

b c 
~>/ N1/2 (A.18) 

(v(r) ) 
g(F) - exp \L3N1/2j 

By the isoperimetric inequality and [FI L ~< N (small contours) we have 

v(  F )  I r l  ~/~ 
_ _  , - , L  -<clFl L3NU 2<~c Nl/2 ~ L 

By a Tchebyshev inequality, 

~2 {exp[bv(co)- wA(~ol Y)]} l~ Z(r;F) 
co F ~ c o  

~exp  (b[A'[ 

where in Z(F; F, g) we 
where we used v(m)> IA'I/2 to obtain the first exponential. We write the 
sum Y~o~ in (A.21) as 

( g ) ( A ' ;  FI Y)Z(A'; FI Y) 

We shall show that 

(O(e ~/2) IA'[I~) 
(g)(A';FI Y) ~<exp \ N1/2 (A.22) 

(A.20) 

{exp[ - WA(co L Y)] } I-I Z(F; F, g) N1/2 ] FGco 
(A.21) 

replaced e -g(v) by e g(Vlg(f) [g(F)>~i! ] ,  and 

follows from (3.26) and (3.27). 
Consider now ~ ,  and introduce 

<~Z(A';FI Y)<~exp(s(Fc)lA'l + { e x p [ - O ( f l ) ] }  I~?A'tL) (A.19) 
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Then, using the bound (A.19) on Z(A'; F] Y), the proof of lemma will be 
finished [O(e-r ~ c/2 for ~ large]. To prove (A.22), we observe that, due 
to (A.20), g(F) is a "small correction" to e -F(r) in the sense that 

e ~IMIt./2 
t g ( F ) -  lte e(r)<~ _ _  (A.23) 

supp(F) -- M N I / 2  

[To get (A.23), use le x -  11 ~< [xle Ixl, (A.20), and the fact that z is large.] 
Coming back to ( g ) ( A ' ; F I  Y), we consider it as a ratio of partition 
functions, for contour models defined by T/2-functionals: we have 
g(F)e -F(r) in the numerator and e -F(r) in the denominator [use (A.20) 
again to prove that F ~  g(F)e -F(r) is a z/2-functional]. Use the con- 
vergent expansion (A.8) (without the restriction to small contours) on both 
terms of that ratio, which gives 

(g) (A';  F[ Y) = exp f E  OT(o, Y)[g(O)-  1]} 
t. 0 

To get this last formula, we use the fact that g(.) is a multiplicative 
functions on contours, 

g(~o) = I]  g(r), g(O) = I]  g(r)  ~ 
F ~  co F 

Now, using 

rg(O)- 11 ~ ~ o(r)Ig(F)- ~1 g(O%) 
F 

where O'r(F')=O(F') for F ' # F ,  and 0~-(F)=0, (A.23), and the usual 
properties of ~br(0, Y), we obtain (A.22). 
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